Skip to main content

Band Alignment in Organic Materials

  • Chapter
Advances in Solid State Physics

Part of the book series: Advances in Solid State Physics ((ASSP,volume 48))

  • 2052 Accesses

Abstract

Band alignment at metal/organic (MO) and organic/organic (OO) interfaces is discussed within a unified Induced Density of Interface States (IDIS) model, which incorporates most of the effects that can be expected to operate at weakly interacting organic interfaces: compression of the metal electron tails due to Pauli repulsion, orientation of molecular dipoles and electron charge transfer between the two media. This last mechanism tends to align the Charge Neutrality Level (CNL) of the organic material and the metal Fermi level (EF): electron charge transfer reduces the initial misalignment between the CNL and the metal work function (πM-CNL) to S(πM-CNL), where S is the interface screening parameter which is shown to also screen the ‘Pauli’ and molecular interface dipoles. Results for several Au/organic and organic/organic interfaces are presented and discussed. PACS numbers: 79.60.Jv, 79.60.Dp, 73.40.Gk, 73.20.-r

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Conjugated Polymer and Molecular Interfaces, edited by W. R. Salaneck, K. Seki, A. Kahn, and J. J. Pireaux (Marcel Dekker, New York, 2001).

    Google Scholar 

  2. W.R. Salaneck, S. Stafström and J.L.Brédas, Conjugated Polymer Surfaces and Interfaces: Electronic and Chemical Structure of Interfaces for Polymer Light emitting Diodes, Cambridge University Press, Cambridge (1996).

    Book  Google Scholar 

  3. N. Koch, Chem. Phys. Chem. 8 1438 (2007).

    Google Scholar 

  4. J. C. Scott, J. Vac. Sci. Technol. A 21 521 (2003).

    Article  ADS  Google Scholar 

  5. C. Shen, A. Kahn, and I. G. Hill: in Conjugated Polymer and Molecular Interfaces, edited by W. R. Salaneck, K. Seki, A. Kahn, and J. J. Pireaux (Marcel Dekker, New York, 2001), pp. 293–350.

    Google Scholar 

  6. C. Shen, A. Kahn, and I. G. Hill, in Conjugated Polymer and Molecular Interfaces, edited by W. R. Salaneck, K. Seki, A. Kahn, and J. J. Pireaux (Marcel Dekker, New York, 2001), pp. 351–400.

    Google Scholar 

  7. D. Cahen, A. Kahn, and E. Umbach, Mater. Today 8 32 (2005).

    Article  Google Scholar 

  8. H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. (Weinheim, Ger.) 11 605 (1999).

    Article  Google Scholar 

  9. S. Narioka, H. Ishii, D. Yoshimura, M. Sei, Y. Ouchi, K. Seki, S. Hasegawa, T. Miyazaki, Y. Harima and K. Yamashita, Appl. Phys. Lett. 67 1899 (1995).

    Article  ADS  Google Scholar 

  10. I. G. Hill, A. Rajagopal, A. Kahn and Y. Hu, Appl. Phys. Lett. 73 662 (1998).

    Article  ADS  Google Scholar 

  11. I. G. Hill, J. Schwartz, and A. Kahn, Org. Electron. 1 5 (2000).

    Article  Google Scholar 

  12. C. Shen and A. Kahn, Org. Electron. 2 89 (2001).

    Article  Google Scholar 

  13. X. Crispin, V. Geskin, A. Crispin, J. Cornil, R. Lazzaroni, W. R. Salaneck and J. L. Brédas, J. Am. Chem. Soc. 124 8131 (2002).

    Article  Google Scholar 

  14. M. Eremtchenko, D. Bauer, J. A. Schaefer and F. S. Tautz, New J. Phys. 6 4 (2004).

    Article  ADS  Google Scholar 

  15. S. Kera, Y. Yabuuchi, H. Yamane, H. Setoyama, K. K. Okudaira, A. Kahn and N. Ueno, Phys. Rev. B 70 085304 (2004).

    Article  ADS  Google Scholar 

  16. M. Knupfer and G. Paasch, J. Vac. Sci. Tech. A 23 1072 (2005).

    Article  ADS  Google Scholar 

  17. P. S. Bagus, V. Staemmler, and C. Wöll, Phys. Rev. Lett. 89 096104 (2002).

    Article  ADS  Google Scholar 

  18. G. Witte, S. Lukas, P. S. Bagus and C. Wöll, Appl. Phys. Lett. 87 263502 (2005).

    Article  ADS  Google Scholar 

  19. H. Vázquez, Y. J. Dappe, J. Ortega and F. Flores, J. Chem. Phys., J. Chem. Phys. 126 144703 (2007).

    ADS  Google Scholar 

  20. H. Vázquez, R. Oszwaldowski, P. Pou, J. Ortega, R. Pérez, F. Flores, and A. Kahn, Europhys. Lett. 65 802 (2004).

    Article  ADS  Google Scholar 

  21. H. Vázquez, F. Flores, R. Oszwaldowski, J. Ortega, R. Pérez, and A. Kahn, Appl. Surf. Sci. 234 108 (2004).

    Article  Google Scholar 

  22. R. Oszwaldowski, H. Vázquez, P. Pou, J. Ortega, R. Pérez and F. Flores, J. Phys.: Condens. Matter 15, S2665 (2003).

    Article  ADS  Google Scholar 

  23. H. Vázquez, W. Gao, F. Flores and A. Kahn, Phys. Rev. B 71 041306(R) (2005).

    Article  ADS  Google Scholar 

  24. M. G. Betti, A. Kanjilal, C. Mariani, H. Vázquez, Y. J. Dappe, J. Ortega and F. Flores, Phys. Rev. Lett. 100 027601 (2008).

    Article  ADS  Google Scholar 

  25. L. Pauling, The Nature of the Chemical Bond (Cornell University Press, Ithaca, NY, 1960), 3rd edition.

    Google Scholar 

  26. P. Fenter, F. Schreiber, L. Zhou, P. Eisenberger and S. R. Forrest, Phys. Rev. B 56, 3046 (1997).

    Article  ADS  Google Scholar 

  27. S. M. Sze. Physics of Semiconductor Devices (John Wiley, New York, 1981).

    Google Scholar 

  28. C. Tejedor, F. Flores and E. Louis, J. Phys. C: Solid State Phys. 10 2163 (1977).

    Article  ADS  Google Scholar 

  29. J. Topping, Proc. R. Soc. London, Ser. A 114, 67 (1927).

    Article  ADS  Google Scholar 

  30. O. V. Molodtsova, M. Grobosch, M. Knupfer and V. Yu. Aristov, Appl. Phys. Lett. 91 244103 (2007).

    Google Scholar 

  31. J. Tersoff, Phys. Rev. B 32 R6968 (1985).

    Article  ADS  Google Scholar 

  32. S. Yanagisawa, Y. Morikawa, Chem. Phys. Lett. 420 523 (2006).

    Article  ADS  Google Scholar 

  33. I.G. Hill, D. Milliron, J. Schwartz and A. Kahn, Appl. Surf. Sci. 166 354 (2000).

    Article  ADS  MATH  Google Scholar 

  34. H. Vázquez, F. Flores and A. Kahn, Org. Electron. 8 241 (2007).

    Article  Google Scholar 

  35. S. Braun, W. Osikowicz, Y. Wang and W.R. Salaneck, Org. Electron. 8 14 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flores, F., Ortega, J., Vázquez, H. (2009). Band Alignment in Organic Materials. In: Haug, R. (eds) Advances in Solid State Physics. Advances in Solid State Physics, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85859-1_17

Download citation

Publish with us

Policies and ethics