Skip to main content

The Role of Receptor Occupancy Noise in Eukaryotic Chemotaxis

  • Chapter
Applications of Nonlinear Dynamics

Part of the book series: Understanding Complex Systems ((UCS))

  • 2131 Accesses

Abstract

Chemotacting eukaryotic cells are able to translate a gradient of occupied receptors into cell motion. For small concentrations and shallow gradients, fluctuations in the number of occupied receptors can become important. Here, we present an effective way to numerically simulate the correlations of these fluctuations. Furthermore, we apply our previously developed formalism ([10])to a simple version of the local excitation, global inhibition model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Gamba, A. de Candia, S. D. Talia, A. Coniglio, F. Bussolino, and G. Serini, Diffusion-limited phase separation in eukaryotic chemotaxis, PNAS, 102 (2005), pp. 16927–16932.

    Article  Google Scholar 

  2. P. Herzmark, K. Campbell, F. Wang, K. Wong, H. El-Samad, A. Groisman, and H. R. Bourne, Bound attractant at the leading vs. the trailing edge determines chemotactic prowess, Proc Natl Acad Sci USA, 104 (2007), pp. 13349–13354.

    Article  Google Scholar 

  3. B. Kutscher, P. Devreotes, and P. A. Iglesias, Local excitation, global inhibition mechanism for gradient sensing: an interactive applet, Sci STKE, 2004 (2004).

    Google Scholar 

  4. A. Levchenko and P. A. Iglesias, Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils, Biophys J, 82 (2002), pp. 50–63.

    Article  Google Scholar 

  5. H. Levine, D. A. Kessler, and W. J. Rappel, Directional sensing in eukaryotic chemotaxis: a balanced inactivation model, Proc Natl Acad Sci USA, 103 (2006), pp. 9761–9766.

    Article  Google Scholar 

  6. M. Meier-Schellersheim, X. Xu, B. Angermann, E. J. Kunkel, T. Jin, and R. N. Germain, Key role of local regulation in chemosensing revealed by a new molecular interaction-based modeling method, PLoS Comput Biol, 2 (2006), p. e82.

    Article  Google Scholar 

  7. A. Narang, K. K. Subramanian, and D. A. Lauffenburger, A mathematical model for chemoattractant gradient sensing based on receptor-regulated membrane phospholipid signaling dynamics, Ann Biomed Eng, 29 (2001), pp. 677–691.

    Article  Google Scholar 

  8. C. A. Parent and P. N. Devreotes, A cell’s sense of direction, Science, 284 (1999), pp. 765–770.

    Article  Google Scholar 

  9. M. Postma and P. J. M. van Haastert, A diffusion-translocation model for gradient sensing by chemotactic cells, Biophys J, 81 (2001), pp. 1314–1323.

    Article  Google Scholar 

  10. W.-J. Rappel and H. Levine, Receptor noise and directional sensing in eukaryotic chemotaxis, Submitted, (2008).

    Google Scholar 

  11. W. J. Rappel, P. J. Thomas, H. Levine, and W. F. Loomis, Establishing direction during chemotaxis in eukaryotic cells, Biophys J, 83 (2002), pp. 1361–1367.

    Article  Google Scholar 

  12. R. Skupsky, W. Losert, and R. J. Nossal, Distinguishing modes of eukaryotic gradient sensing, Biophys J, 89 (2005), pp. 2806–2823.

    Article  Google Scholar 

  13. L. Song, S. M. Nadkarni, H. U. Bödeker, C. Beta, A. Bae, C. Franck, W.-J. Rappel, W. F. Loomis, and E. Bodenschatz, Dictyostelium discoideum chemotaxis: threshold for directed motion, Eur J Cell Biol, 85 (2006), pp. 981–989.

    Article  Google Scholar 

  14. J. R. Stiles and T. M. Bartol, Monte Carlo methods for simulating realistic synaptic microphysiology using MCell, in Computational Neurobiology: Realistic Modeling for Experimentalists, E. de Schutter, ed., CRC Press, Boca Raton, FL, 2001.

    Google Scholar 

  15. M. Ueda, Y. Sako, T. Tanaka, P. N. Devreotes, and T. Yanagida, Single-molecule analysis of chemotactic singaling in Dictyostelium cells, Science, 294 (2001), pp. 864–867.

    Article  Google Scholar 

  16. M. Ueda and T. Shibata, Stochastic signal processing and transduction in chemotactic response of eukaryotic cells, Biophys J, 93 (2007), pp. 11–20.

    Article  Google Scholar 

  17. K. Wang, W. J. Rappel, R. Kerr, and H. Levine, Quantifying noise levels of intercellular signals, Phys Rev E, 75 (2007), p. 061905.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rappel, WJ., Levine, H. (2009). The Role of Receptor Occupancy Noise in Eukaryotic Chemotaxis. In: In, V., Longhini, P., Palacios, A. (eds) Applications of Nonlinear Dynamics. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85632-0_6

Download citation

Publish with us

Policies and ethics