Skip to main content

GNSS Carrier Phase Ambiguity Resolution: Challenges and Open Problems

  • Conference paper
Observing our Changing Earth

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 133))

Abstract

Integer carrier phase ambiguity resolution is the key to fast and high-precision global navigation satellite system (GNSS) positioning and application. Although considerable progress has been made over the years in developing a proper theory for ambiguity resolution, the necessary theory is far from complete.

In this contribution we address three topics for which further developments are needed. They are: (1) Ambiguity acceptance testing; (2) Ambiguity subset selection; and (3) Integer-based GNSS model validation. We will address the shortcommings of the present theory and practices, and discuss directions for possible solutions

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abidin, H. A. (1993). Computational and geometrical aspects of on-the-fly ambiguity resolution. Ph.D. thesis, Dept. of Surveying Engineering, Techn. Report no. 104, University of New Brunswick, Canada, page 314

    Google Scholar 

  • Chen, Y. (1997). An approach to validate the resolved ambiguities in GPS rapid positioning. Proc. of the International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation, Banff, Canada, pages 301–304

    Google Scholar 

  • Euler, H. J. and Schaffrin, B. (1991). On a measure for the discernibility between different ambiguity solutions in the static-kinematic GPS-mode. IAG Symposia no. 107, Kinematic Systems in Geodesy, Surveying, and Remote Sensing, Springer-Verlag, New York, pages 285–295

    Google Scholar 

  • Han, S. and Rizos, C. (1996). Validation and rejection criteria for integer least-squares estimation. Survey Review, 33(260):375–382

    Google Scholar 

  • Hofmann-Wellenhoff, B., Lichtenegger, H., and Collins, J. (2001). Global Positioning System: Theory and Practice. Springer-Verlag, Berlin, 5th edition

    Google Scholar 

  • Ji, S., Chen, W., Zhao, C., Ding, X., and Chen, Y. (2007). Single epoch ambiguity resolution for Galileo with the CAR and LAMBDA methods. GPS Solutions, DOI 10.1007/s10291-007-0057-9

    Google Scholar 

  • Joosten, P. and Tiberius, C. C. J. M. (2000). Fixing the ambiguities: are you sure they’re right. GPS World, 11(5):46–51

    Google Scholar 

  • Koch, K. R. (1999). Parameter Estimation and Hypothesis Testing in Linear Models. Springer Verlag, Berlin, 2nd edition

    Google Scholar 

  • Lee, H. K., Wang, J., and Rizos, C. (2005). An integer ambiguity resolution procedure for GPS/pseudolite/INS integration. Journal of Geodesy, 79(4–5): 242–255

    Article  Google Scholar 

  • Leick, A. (2003). GPS Satellite Surveying. John Wiley and Sons, New York, 3rd edition

    Google Scholar 

  • Misra, P. and Enge, P. (2001). Global Positioning System: Signals, Measurements, and Performance. Ganga-Jamuna Press, Lincoln, MA

    Google Scholar 

  • Strang, G. and Borre, K. (1997). Linear Algebra, Geodesy, and GPS. Wellesley-Cambridge Press, Wellesley, MA

    Google Scholar 

  • Teunissen, P.J.G. (1997a). A canonical theory for short GPS baselines. Part IV: Precision versus reliability. Journal of Geodesy, 71:513–525

    Article  Google Scholar 

  • Teunissen, P.J.G. (1997b). On the GPS widelane and its decorrelation property. Journal of Geodesy, 71(9):577–587

    Article  Google Scholar 

  • Teunissen, P.J.G. (1998a). On the integer normal distribution of the GPS ambiguities. Artificial Satellites, 33(2):49–64

    Google Scholar 

  • Teunissen, P.J.G. (1998b). Success probability of integer GPS ambiguity rounding and bootstrapping. Journal of Geodesy, 72:606–612

    Article  Google Scholar 

  • Teunissen, P.J.G. (1999). An optimality property of the integer least-squares estimator. Journal of Geodesy, 73(11):587–593

    Article  Google Scholar 

  • Teunissen, P.J.G. (2001). GNSS ambiguity bootstrapping: Theory and applications. Proc. KIS2001, International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation, June 5–8, Banff, Canada, pages 246–254

    Google Scholar 

  • Teunissen, P.J.G. (2003). Integer aperture GNSS ambiguity resolution. Artificial Satellites, 38(3):79–88

    Google Scholar 

  • Teunissen, P.J.G. (2006). Testing Theory, an Introduction. Delft University Press, Delft, 2nd edition

    Google Scholar 

  • Teunissen, P.J.G. (2007). Least-squares prediction in linear models with integer unknowns. Journal of Geodesy, DOI:10.1007/s00190-007-0138-0

    Google Scholar 

  • Teunissen, P.J.G., Joosten, P., and Tiberius, C. C. J. M. (1999). Geometry-free ambiguity success rates in case of partial fixing. Proc. of National Technical Meeting & 19th Biennal Guidance Test Symposium ION 1999, San Diego CA, pages 201–207

    Google Scholar 

  • Teunissen, P.J.G. and Kleusberg, A. (1998). GPS for Geodesy. Springer, Berlin Heidelberg New York, 2nd edition

    Google Scholar 

  • Teunissen, P.J.G. and Verhagen, S. (2004). On the foundation of the popular ratio test for GNSS ambiguity resolution. Proc. of ION GNSS-2004, Long Beach CA, pages 2529–2540

    Google Scholar 

  • Teunissen, P.J.G. and Verhagen, S. (2007a). GNSS Phase Ambiguity Validation: A Review. Proc. Space, Aeronautical and Navigational Electronics Symposium SANE2007, The Institute of Electronics, Information and Communication Engineers (IEICE), Japan, 107(2):1–6

    Google Scholar 

  • Teunissen, P.J.G. and Verhagen, S. (2007b). The GNSS ratio-test revisited. Submitted to Survey Review

    Google Scholar 

  • Verhagen, S. (2005a). On the reliability of integer ambiguity resolution. Navigation, 52(2):99–110

    Google Scholar 

  • Verhagen, S. (2005b). The GNSS integer ambiguities: estimation and validation. Ph.D. thesis, Publications on Geodesy, 58, Netherlands Geodetic Commission, Delft

    Google Scholar 

  • Verhagen, S. and Teunissen, P.J.G. (2006). New global navigation satellite system ambiguity resolution method.compared to existing approaches. Journal of Guidance, Control, and Dynamics, 29(4):981–991

    Article  Google Scholar 

  • Vollath, U., Sauer, K., Amarillo, F., and Pereira, J. (2003). Three or four carriers – how many are enough? Proc. of ION GNSS-2003, Portland OR, pages 1470–1477

    Google Scholar 

  • Wei, M. and Schwarz, K. P. (1995). Fast ambiguity resolution using an integer nonlinear programming method. Proc. of ION GPS-1995, Palm Springs CA, pages 1101–1110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Teunissen, P., Verhagen, S. (2009). GNSS Carrier Phase Ambiguity Resolution: Challenges and Open Problems. In: Sideris, M.G. (eds) Observing our Changing Earth. International Association of Geodesy Symposia, vol 133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85426-5_90

Download citation

Publish with us

Policies and ethics