Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 161))

Summary

This chapter reviews biologically inspired algorithms for solving a class of difficult combinatorial optimization problems known as vehicle routing problems, where least-cost collection or delivery routes are designed to serve a set of customers in a transportation network. From a methodological standpoint, the review includes evolutionary algorithms, ant colony optimization, particle swarm optimization, neural networks, artificial immune systems and hybrids. From an application standpoint, the most popular vehicle routing variants are considered, starting with the classical vehicle routing problem with capacity constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, R.K., Ergun, O., Orlin, J.B., Punnen, A.P.: A survey of very large-scale neighborhood search techniques. Discrete Applied Mathematics 123, 75–102 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berger, J., Barkaoui, M., Bräysy, O.: A route-directed hybrid genetic approach for the vehicle routing problem with time windows. INFOR 41, 179–194 (2003)

    Google Scholar 

  3. Berger, J., Salois, M., Bégin, R.: A hybrid genetic algorithm for the vehicle routing problem with time windows. In: Mercer, R.E. (ed.) Canadian AI 1998. LNCS, vol. 1418, pp. 114–127. Springer, Heidelberg (1998)

    Google Scholar 

  4. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies: A comprehensive introduction. Natural Computing 1, 3–52 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blanton, J.L., Wainwright, R.L.: Multiple vehicle routing with time and capacity constraints using genetic algorithms. In: Forrest, S. (ed.) Proceedings of the 5th International Conference on Genetic Algorithms, pp. 451–459. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  6. Bullnheimer, B., Hartl, R.F., Strauss, C.: Applying the ant system to the vehicle routing problem. In: Voss, S., Martello, S., Osman, I.H., Roucairol, C. (eds.) Meta-heuristics: Advances and trends in local search paradigms for optimization, pp. 285–296. Kluwer, Boston (1999)

    Google Scholar 

  7. Bullnheimer, B., Hartl, R.F., Strauss, C.: An improved ant system algorithm for the vehicle routing problem. Annals of Operations Research 89, 319–328 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bullnheimer, B., Hartl, R.F., Strauss, C.: A new rank-based version of the ant system: A computational study. Central European Journal for Operations Research and Economics 7, 25–38 (1999)

    MATH  MathSciNet  Google Scholar 

  9. Chen, A.-L., Yang, G.K., Wu, Z.M.: Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem. Journal of Zhejiang University SCIENCE A 7, 607–614 (2006)

    Article  MATH  Google Scholar 

  10. Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing problem. In: Christofides, N., Mingozzi, A., Toth, P., Sandi, C. (eds.) Combinatorial Optimization, pp. 315–338. Wiley, Chichester (1979)

    Google Scholar 

  11. Clarke, G., Wright, J.: Scheduling of vehicles from a central depot to a number of delivery points. Operations Research 12, 568–581 (1964)

    Google Scholar 

  12. Cordeau, J.-F., Laporte, G., Mercier, A.: A unified tabu search heuristic for vehicle routing problems with time windows. Journal of the Operational Research Society 52, 928–936 (2001)

    Article  MATH  Google Scholar 

  13. Dasgupta, D. (ed.): Artificial immune systems and their applications. Springer, Berlin (1999)

    MATH  Google Scholar 

  14. de Castro, L.N.: Fundamentals of natural computing: Basic concepts, algorithms, and applications. CRC Press, Boca Raton (2006)

    MATH  Google Scholar 

  15. de Castro, L.N., Timmis, J.: Artificial immune systems: A new computational intelligence approach. Springer, London (2002)

    MATH  Google Scholar 

  16. Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. Dissertation, Politecnico di Milano, Italy (in Italian) (1992)

    Google Scholar 

  17. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1, 53–66 (1997)

    Article  Google Scholar 

  18. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics 26, 29–41 (1996)

    Article  Google Scholar 

  19. Dorigo, M., Stützle, T.: Ant colony optimization. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  20. Dror, M. (ed.): Arc routing: Theory, Solutions and Approximations. Springer, Berlin (2000)

    Google Scholar 

  21. Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems, Part 1: The chinese postman problem. Operations Research 43, 231–242 (1995)

    MATH  MathSciNet  Google Scholar 

  22. Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems, Part 2: The rural postman problem. Operations Research 43, 399–414 (1995)

    MATH  MathSciNet  Google Scholar 

  23. Farmer, J.D., Kauffman, S., Packard, N.H., Perelson, A.S.: Adaptive dynamic networks as models for the immune system and autocatalytic sets. Annals of the New York Academy of Sciences 504, 118–131 (1987)

    Article  Google Scholar 

  24. Gambardella, L.M., Taillard, É.D., Agazzi, G.: MACS-VRPTW: A multiple ant colony system for vehicle routing problems with time windows. In: Corne, D., Dorigo, M., Glover, F. (eds.) New ideas in optimization, pp. 63–76. McGraw-Hill, London (1999)

    Google Scholar 

  25. Gehring, H., Homberger, J.: A parallel hybrid evolutionary metaheuristic for the vehicle routing problem with time windows. In: Miettinen, K., Mäkelä, M.M., Toivanen, J. (eds.) Proceedings of EUROGEN 1999 - Short course on evolutionary algorithms in engineering and computer science, Reports of the Department of Mathematical Information Technology, No. A 2/1999. University of Jyväskylä, Finland, pp. 57–64 (1999)

    Google Scholar 

  26. Gelinas, S., Desrochers, M., Desrosiers, J., Solomon, M.M.: A new branching strategy for time constrained routing problems with application to backhauling. Annals of Operations Research 61, 91–109 (1995)

    Article  MATH  Google Scholar 

  27. Gendreau, M., Laporte, G., Potvin, J.-Y.: Metaheuristics for the Capacitated VRP. In: Toth, P., Vigo, D. (eds.) The vehicle routing problem, pp. 129–154. SIAM, Philadelphia (2002)

    Google Scholar 

  28. Ghaziri, H.: Supervision in the self-organizing feature map: Application to the vehicle routing problem. In: Osman, I.H., Kelly, J.P. (eds.) Meta-heuristics: Theory & applications, pp. 651–660. Kluwer, Boston (1996)

    Google Scholar 

  29. Ghaziri, H.: Solving routing problems by a self-organizing map. In: Kohonen, T., Makisara, K., Simula, O., Kangas, J. (eds.) Artificial neural networks, pp. 829–834. North-Holland, Amsterdam (1991)

    Google Scholar 

  30. Ghaziri, H., Osman, I.H.: Self-organizing feature maps for the vehicle routing problem with backhauls. Journal of Scheduling 9, 97–114 (2006)

    Article  MATH  Google Scholar 

  31. Gillett, B., Miller, L.: A Heuristic Algorithm for the Vehicle Dispatch Problem. Operations Research 22, 340–379 (1974)

    MATH  Google Scholar 

  32. Glover, F., Laguna, M.: Tabu search. Kluwer, Boston (1997)

    MATH  Google Scholar 

  33. Golden, B.L., Wasil, E.A., Kelly, J.P., Chao, I.-M.: The impact of metaheuristics on solving the vehicle routing problem: Algorithms, problem sets and computational results. In: Crainic, T.G., Laporte, G. (eds.) Fleet Management and Logistics, pp. 33–56. Kluwer, Norwell (1998)

    Google Scholar 

  34. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor (1975); (reprinted in 1992 by The MIT Press, Cambridge, MA)

    Google Scholar 

  35. Homberger, J., Gehring, H.: Two evolutionary metaheuristics for the vehicle routing problem with time windows. INFOR 37, 297–318 (1999)

    Google Scholar 

  36. Homberger, J., Gehring, H.: A two-phase hybrid metaheuristic for the vehicle routing problem with time windows. European Journal of Operational Research 162, 220–238 (2005)

    Article  MATH  Google Scholar 

  37. Hopfield, J.J., Tank, D.W.: Neural computation of decisions in optimization problems. Biological Cybernetics 52, 141–152 (1985)

    MATH  MathSciNet  Google Scholar 

  38. Jung, S., Moon, B.-R.: A hybrid genetic algorithm for the vehicle routing problem with time windows. In: Langdon, W.B., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1309–1316. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  39. Keko, H., Skok, M., Skrlec, D.: Solving the distribution network routing problem with artificial immune systems. In: Proceedings of the IEEE Mediterranean Electrotechnical Conference. Dubrovnik, Croatia, pp. 959–962 (2004)

    Google Scholar 

  40. Kennedy, J., Eberhart, R.C.: Swarm intelligence. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  41. Kirkpatrick, S., Jr Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  42. Kohonen, T.: Self-organization and associative memory. Springer, Berlin (1988)

    MATH  Google Scholar 

  43. Laporte, G.: The vehicle routing problem: An overview of exact and approximate algorithms. European Journal of Operational Research 59, 345–358 (1992)

    Article  MATH  Google Scholar 

  44. Laporte, G.: Vehicle routing. In: Dell’Amico, M., Maffioli, F., Martello, S. (eds.) Annotated bibliographies in combinatorial optimization, pp. 223–240. Wiley, Chichester (1997)

    Google Scholar 

  45. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Schmoys, D.B. (eds.): The traveling salesman problem. Wiley, Chichester (1985)

    MATH  Google Scholar 

  46. Le Bouthillier, A., Crainic, T.G.: A cooperative parallel meta-heuristic for the vehicle routing problem with time windows. Computers & Operations Research 32, 1685–1708 (2005)

    Article  MATH  Google Scholar 

  47. Le Bouthillier, A., Crainic, T.G., Kropf, P.: A guided cooperative search for the vehicle routing problem with time windows. IEEE Intelligent Systems 20, 36–42 (2005)

    Article  Google Scholar 

  48. Lin, S.: Computer solutions of the traveling salesman problem. Bell System Technical Journal 44, 2245–2269 (1965)

    MATH  MathSciNet  Google Scholar 

  49. Ma, J., Zou, H., Gao, L.-Q., Li, D.: Immune genetic algorithm for vehicle routing problem with time windows. In: Proceedings of the Fifth International Conference on Machine Learning and Cybernetics. Dalian, China, pp. 3465–3469 (2006)

    Google Scholar 

  50. Matsuyama, Y.: Self-organization via competition, cooperation and categorization applied to extended vehicle routing problems. In: Proceedings of the International Joint Conference on Neural Networks. Seattle, WA I–385–390 (1991)

    Google Scholar 

  51. Mester, D., Bräysy, O.: Active guided evolution strategies for large-scale vehicle routing problems with time windows. Computers & Operations Research 32, 1593–1614 (2005)

    Article  Google Scholar 

  52. Mester, D., Bräysy, O.: Active guided evolution strategies for large-scale capacitated vehicle routing problems. Computers & Operations Research 34, 2964–2975 (2007)

    Article  MATH  Google Scholar 

  53. Mester, D., Bräysy, O., Dullaert, W.: A multi-parametric evolution strategies algorithm for vehicle routing problems. Expert Systems with Applications 32, 508–517 (2007)

    Article  Google Scholar 

  54. Mladenović, N., Hansen, P.: Variable neighborhood search. Computers & Operations Research 24, 1097–1100 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  55. Modares, A., Somhom, S., Enkawa, T.: A self-organizing neural network approach for multiple traveling salesman and vehicle routing problems. International Transactions in Operations Research 6, 591–606 (1999)

    Article  MathSciNet  Google Scholar 

  56. Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 105–144. Kluwer, Boston (2003)

    Chapter  Google Scholar 

  57. Nagata, Y.: Edge assembly crossover for the capacitated vehicle routing problem. In: Cotta, C., van Hemert, J. (eds.) EvoCOP 2007. LNCS, vol. 4446, pp. 142–153. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  58. Nagata, Y.: Effective memetic algorithm for the vehicle routing problem with time windows: Edge assembly crossover for the VRPTW. In: Proceedings of the Seventh Metaheuristics International Conference, Montreal, Canada (2007) (on CD-ROM)

    Google Scholar 

  59. Oliver, I.M., Smith, D.J., Holland, J.R.C.: A study of permutation crossover operators on the traveling salesman problem. In: Grefenstette, J.J. (ed.) Proceedings of the Second International Conference on Genetic Algorithms and Their Applications, pp. 224–230. Lawrence Erlbaum Associates, Hillsdale (1987)

    Google Scholar 

  60. Osman, I.H.: Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Annals of Operations Research 41, 421–451 (1993)

    Article  MATH  Google Scholar 

  61. Pereira, F.B., Tavares, J., Machado, P., Costa, E.: GVR: A new genetic representation for the vehicle routing problem. In: O’Neill, M., Sutcliffe, R.F.E., Ryan, C., Eaton, M., Griffith, N.J.L. (eds.) AICS 2002. LNCS (LNAI), vol. 2464, pp. 95–102. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  62. Potvin, J.-Y.: Genetic algorithms for the traveling salesman problem. Annals of Operations Research 63, 339–370 (1996)

    Article  MATH  Google Scholar 

  63. Potvin, J.-Y., Bengio, S.: The vehicle routing problem with time windows - Part II: Genetic search. INFORMS Journal on Computing 8, 165–172 (1996)

    MATH  Google Scholar 

  64. Potvin, J.-Y., Duhamel, C., Guertin, F.: A genetic algorithm for vehicle routing with backhauling. Applied Intelligence 6, 345–355 (1996)

    Article  Google Scholar 

  65. Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing problem. Computers & Operations Research 31, 1985–2002 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  66. Reimann, M., Doerner, K., Hartl, R.F.: D-Ants: Savings based ants divide and conquer the vehicle routing problem. Computers & Operations Research 31, 563–591 (2004)

    Article  MATH  Google Scholar 

  67. Reimann, M., Doerner, K., Hartl, R.F.: Insertion based ants for vehicle routing problems with backhauls and time windows. In: Dorigo, M., Di Caro, G., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 135–147. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  68. Reimann, M., Stummer, M., Doerner, K.: A savings-based ant system for the vehicle routing problem. In: Langdon, W.B., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1317–1325. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  69. Reimann, M., Ulrich, H.: Comparing backhauling strategies in vehicle routing using ant colony optimization. Central European Journal of Operations Research 14, 105–123 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  70. Reinelt, G.: TSPLIB - A traveling salesman problem library. ORSA Journal on Computing 3, 376–384 (1991)

    MATH  Google Scholar 

  71. Rochat, Y., Taillard, É.D.: Probabilistic diversification and intensification in local search for vehicle routing. Journal of Heuristics 1, 147–167 (1995)

    Article  MATH  Google Scholar 

  72. Ropke, S., Pisinger, D.: A unified heuristic for a large class of vehicle routing problems with backhauls. European Journal of Operational Research 171, 750–775 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  73. Schrimpf, G., Schneider, J., Stamm-Wilmbrandt, H., Duek, G.: Record breaking optimization results using the ruin and recreate principle. Journal of Computational Physics 159, 139–171 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  74. Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 417–431. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  75. Schumann, M., Retzko, R.: Self-organizing maps for vehicle routing problems: Minimizing an explicit cost function. In: Fogelman-Soulie, F. (ed.) Proceedings of the International Conference on Artificial Neural Networks, EC2&Cie, Paris, pp. II–401–406 (1995)

    Google Scholar 

  76. Solomon, M.M.: Time window constrained routing and scheduling problems. Operations Research 35, 254–265 (1987)

    MATH  MathSciNet  Google Scholar 

  77. Stützle, T., Hoos, H.H.: MAX-MIN ant system. Future Generation Computer Systems Journal 16, 889–914 (2000)

    Article  Google Scholar 

  78. Taillard, É.D., Badeau, P., Gendreau, M., Guertin, F., Potvin, J.-Y.: A tabu search heuristic for the vehicle routing problem with soft time windows. Transportation Science 31, 170–186 (1997)

    Article  MATH  Google Scholar 

  79. Tavares, J., Pereira, F.B., Machado, P., Costa, E.: GVR delivers it on time. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning, Singapore, pp. 745–749 (2002)

    Google Scholar 

  80. Tavares, J., Pereira, F.B., Machado, P., Costa, E.: On the influence of GVR in vehicle routing. In: Proceedings of the ACM Symposium on Applied Computing, Melbourne, FL, pp. 753–758 (2003)

    Google Scholar 

  81. Thangiah, S.R.: An adaptive clustering method using a geometric shape for vehicle routing problems with time windows. In: Eshelman, L.J. (ed.) Proceedings of the 6th International Conference on Genetic Algorithms, pp. 536–543. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  82. Thangiah, S.R., Nygard, K.E., Juell, P.L.: GIDEON: A genetic algorithm system for vehicle routing with time windows. In: Proceedings of 7th IEEE Conference on Artificial Intelligence Applications, pp. 322–328. IEEE Computer Society Press, Los Alamitos (1991)

    Chapter  Google Scholar 

  83. Thangiah, S.R., Salhi, S.: Genetic clustering: An adaptive heuristic for the multidepot vehicle routing problem. Applied Artificial Intelligence 15, 361–383 (2001)

    Article  Google Scholar 

  84. Thangiah, S.R., Potvin, J.-Y., Sun, T.: Heuristic approaches to vehicle routing with backhauls and time windows. Computers & Operations Research 23, 1043–1057 (1996)

    Article  MATH  Google Scholar 

  85. Toth, P., Vigo, D. (eds.): The vehicle routing problem. SIAM, Philadelphia (2001)

    Google Scholar 

  86. Vakhutinsky, A.I., Golden, B.L.: Solving vehicle routing problems using elastic net. In: Proceedings of the IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 4535–4540. IEEE Press, Los Alamitos (1994)

    Google Scholar 

  87. Voudouris, C., Tsang, E.P.K.: Guided local search. Technical Report CSM-247, Department of Computer Science, University of Essex, Colchester, UK (1995)

    Google Scholar 

  88. Zhong, Y., Cole, M.H.: A vehicle routing problem with backhauls and time windows: A guided local search solution. Transportation Research E 41, 131–144 (2005)

    Article  Google Scholar 

  89. Zhu, Q., Qian, L., Li, Y., Zhu, S.: An improved particle swarm optimization algorithm for vehicle routing problem with time windows. In: Proceedings of the IEEE Congress on Evolutionary Computation, Piscataway, NJ, pp. 1386–1390. IEEE Press, Los Alamitos (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Babtista Pereira Jorge Tavares

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Potvin, JY. (2009). A Review of Bio-inspired Algorithms for Vehicle Routing. In: Pereira, F.B., Tavares, J. (eds) Bio-inspired Algorithms for the Vehicle Routing Problem. Studies in Computational Intelligence, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85152-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85152-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85151-6

  • Online ISBN: 978-3-540-85152-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics