Skip to main content

Learning Declarative Bias

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4894))

Abstract

In this paper, we introduce an inductive logic programming approach to learning declarative bias. The target learning task is inductive process modeling, which we briefly review. Next we discuss our approach to bias induction while emphasizing predicates that characterize the knowledge and models associated with the HIPM system. We then evaluate how the learned bias affects the space of model structures that HIPM considers and how well it generalizes to other search problems in the same domain. Results indicate that the bias reduces the size of the search space without removing the most accurate structures. In addition, our approach reconstructs known constraints in population dynamics. We conclude the paper by discussing a generalization of the technique to learning bias for inductive logic programming and by noting directions for future work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Langley, P., Sánchez, J., Todorovski, L., Džeroski, S.: Inducing process models from continuous data. In: Proceedings of the Nineteenth International Conference on Machine Learning, Sydney, pp. 347–354. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  2. Todorovski, L., Bridewell, W., Shiran, O., Langley, P.: Inducing hierarchical process models in dynamic domains. In: Proceedings of the Twentieth National Conference on Artificial Intelligence, Pittsburgh, PA, pp. 892–897. AAAI Press, Menlo Park (2005)

    Google Scholar 

  3. Provost, F., Buchanan, B.: Inductive policy: The pragmatics of bias selection. Machine Learning 20, 35–61 (1995)

    Google Scholar 

  4. Utgoff, P.E.: Machine Learning of Inductive Bias. Kluwer Academic Publishers, Boston, MA (1986)

    Google Scholar 

  5. Srinivasan, A.: The Aleph Manual. Computing Laboratory, Oxford University Press, Oxford (2000), http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph_toc.html

    Google Scholar 

  6. Bunch, D.S., Gay, D.M., Welsch, R.E.: Algorithm 717: Subroutines for maximum likelihood and quasi-likelihood estimation of parameters in nonlinear regression models. ACM Transactions on Mathematical Software 19, 109–130 (1993)

    Article  MATH  Google Scholar 

  7. Cohen, S., Hindmarsh, A.: CVODE, a stiff/nonstiff ODE solver in C. Computers in Physics 10, 138–143 (1996)

    Google Scholar 

  8. Lavrac, N., Džeroski, S.: Inductive Logic Programming: Techniques and Applications. Ellis Horwood, New York (1994)

    MATH  Google Scholar 

  9. Jost, C., Ellner, S.: Testing for predator dependence in predator–prey dynamics: A non-parametric approach. In: Proceedings of the Royal Society of London B, vol. 267(1453), pp. 1611–1620 (2000)

    Google Scholar 

  10. Kingsland, S.E.: Modeling Nature, 2nd edn. The University of Chicago Press, Chicago, IL (1995)

    Google Scholar 

  11. Giraud-Carrier, C., Vilalta, R., Brazdil, P.: Introduction to the special issue on meta-learning. Machine Learning 54, 187–193 (2004)

    Article  Google Scholar 

  12. McCreath, E., Sharma, A.: Extraction of meta-knowledge to restrict the hypothesis space for ILP systems. In: Proceedings of the Eighth Australian Joint Conference on Artificial Intelligence, Canberra, Australia, pp. 75–82. World Scientific Publishers, Singapore (1995)

    Google Scholar 

  13. Huang, Y., Selman, B., Kautz, H.A.: Learning declarative control rules for constraint-based planning. In: Proceedings of the Seventeenth International Conference on Machine Learning, Stanford, CA, pp. 415–422. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  14. Silverstein, G., Pazzani, M.J.: Relational clichés: Constraining constructive induction during relational learning. In: Proceedings of the Eighth International Workshop on Machine Learning, pp. 203–207. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  15. Morin, J., Matwin, S.: Relational learning with transfer of knowledge between domains. In: Proceedings of the Thirteenth Biennial Conference of the Canadian Society for Computational Studies of Intelligence, pp. 379–388. Springer, Heidelberg (2000)

    Google Scholar 

  16. Muggleton, S.: Learning from positive data. In: Proceedings of the Sixth International Workshop on Inductive Logic Programming, Stockholm, Sweden, pp. 358–376. Springer, Heidelberg (1996)

    Google Scholar 

  17. Reid, M.: DEFT guessing: Using inductive transfer to improve rule evaluation from limited data. Ph.D. thesis, University of New South Wales, Sydney, Australia (2007)

    Google Scholar 

  18. Pazzani, M.J., Kibler, D.F.: The utility of knowledge in inductive learning. Machine Learning 9, 57–94 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hendrik Blockeel Jan Ramon Jude Shavlik Prasad Tadepalli

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bridewell, W., Todorovski, L. (2008). Learning Declarative Bias. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds) Inductive Logic Programming. ILP 2007. Lecture Notes in Computer Science(), vol 4894. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78469-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78469-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78468-5

  • Online ISBN: 978-3-540-78469-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics