Skip to main content

M5 Heat Transfer in Fluidized Beds

  • Reference work entry
  • First Online:
VDI Heat Atlas

Part of the book series: VDI-Buch ((VDI-BUCH))

1 Range of Existence of Fluidization and Bed Expansion

In order to fluidize a particulate solid by an upward-flowing gas or liquid, the fluid velocity u (i.e., the volumetric flowrate divided by the total cross-section) must be in the range between the minimum fluidization velocity, u mf, and the terminal velocity, u t:

$$u_{{\rm{mf}}} > u > u_{\rm{t}}.$$
((1))

The two limits in Eq. (1) define the range of existence of a fluidized bed. The limiting velocities are obtained from force (or momentum) balances as

$${{u_{{\rm{mf}}} d} \over \nu } \equiv {\rm{Re}}_{{\rm{mf}}} = {\rm{Re}}_{{\rm{mf}}} ({\rm{Ar}},\psi _{{\rm{mf}}} ),$$
((2))
$${{u_{\rm{t}} d} \over \nu } \equiv {\rm{Re}}_{\rm{t}} = {\rm{Re}}_{\rm{t}} ({\rm{Ar}}),$$
((3))

where ψ mf is the bed voidage at minimum fluidization (practically often between 0.4 and 0.7) and Ar is the Archimedes number \({\rm{Ar}} \equiv gd^3 \rho (\rho _{\rm{P}} - \rho )/\eta ^2\). For spherical monosized particles Eq. (2) becomes

$${\rm{Re}}_{{\rm{mf}...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

5 Bibliography

  1. Reh L (1977) Trends in research and industrial application of fluidization. Verfahrenstechnik 11(6):381–384and 7, 425–428

    Google Scholar 

  2. Bakker PJ, Heertjes PM (1960) Porosity distributions in a fluidized bed. Chem Eng Sci 12:260–271

    Article  Google Scholar 

  3. Gnielinski V (1978) Gleichungen zur Berechnung des Wärme- und Stoffaustausches in durchströmten ruhenden Kugelschüttungen bei mittleren und großen Péclet-Zahlen. Verfahrenstechnik 12(6):363–366

    Google Scholar 

  4. Donnadieu G (1961) Transmission de la chaleur dans les milieux granulaires. Etude du lit fixe et du lit fluidise. Rev Inst Franç Petrole 16:1330 ff

    Google Scholar 

  5. Damronglerd S (1973) Transfert de matière en fluidisation homogène. These, Université Paul Sabatier de Toulouse

    Google Scholar 

  6. Zabrodsky SS (1966) Hydrodynamics and heat transfer in fluidized beds. The M.I.T. Press, Cambridge, MA (Chap. 8, Figs. 8–11)

    MATH  Google Scholar 

  7. Kunii D, Levenspiel O (1969) Fluidization engineering. John Wiley & Sons, Inc., New York

    Google Scholar 

  8. Xavier AM, Davidson JF (1985) Heat transfer in fluidized beds. In: JF Davidson et al. (eds) Fluidization, 2nd edn. Academic Press, London

    Google Scholar 

  9. Schlünder EU (1977) On the mechanism of mass transfer in heterogeneous systems. Chem Eng Sci 32:845–851

    Article  Google Scholar 

  10. Martin H (1978) Low Péclet number particle-to-fluid heat and mass transfer in packed beds. Chem Eng Sci 33:913–919

    Article  Google Scholar 

  11. Subramanian D, Martin H, Schlünder EU (1977) Stoffübertragung zwischen Gas und Feststoff in Wirbelschichten. Verfahrenstechnik 11(12):748–750

    Google Scholar 

  12. Wunder R (1980) Wärmeübergang an vertikalen Wärmetauscherflächen in Gaswirbelschichten. Diss. T.U. München

    Google Scholar 

  13. Martin H (1980) Wärme- und Stoffübertragung in der Wirbelschicht. Chemie-Ing-Techn 52(3):199–209

    Article  Google Scholar 

  14. Schlünder EU (1971) Wärmeübergang an bewegte Kugelschüttungen bei kurzfristigem Kontakt. Chemie-Ing-Techn 43(11):651–654

    Article  Google Scholar 

  15. Reiter TW, Camposilvan J, Nehren R (1972) Akkommodationskoeffizienten von Edelgasen an Pt im Temperaturbereich von 80 bis 450 K. Wärme- und Stoffübertragung 5(2):116–120

    Article  Google Scholar 

  16. Heyde M, Klocke HJ (1979) Wärmeübergang zwischen Wirbelschicht und Einbauten – ein Problem des Wärmeübergangs bei kurzfristigem Kontakt. Chemie-Ing-Techn 51(4):318–319

    Article  Google Scholar 

  17. Baskakov AP, et al. et al. (1973) Heat transfer to objects immersed in fluidized beds. Powder Technol 8:273–282

    Article  Google Scholar 

  18. Martin H Fluid Bed Heat Exchangers. Proceedings of the 1981 international seminar advancements in heat exchangers, Dubrovnik, Sept. 1981

    Google Scholar 

  19. Bock HJ (1980) Experimentelle und theoretische Untersuchungen zum Einfluss der lokalen Hydrodynamik auf den lokalen Wärmeübergang in Gas-Feststoff-Wirbelschichten. Diss. U. Erlangen

    Google Scholar 

  20. Martin H (1984) Heat transfer between gas fluidized beds of solid particles and the surfaces of immersed heat exchanger elements. Chem Eng Process 18:157–169and 199–233

    Article  Google Scholar 

  21. Janssen K (1973) Beitrag zur Berechnung von Wärmeübergangszahlen zwischen Fluidatbetten und darin eintauchenden Wärmetauschflächen in Abhängigkeit von den Strömungsbedingun-gen inhomogener Fluidisierungszustände. Diss. RWTH Aachen

    Google Scholar 

  22. Jüntgen H, van Heek KH (1977) A technical scale gas generator for steam gasification of coal using nuclear heat. Nuclear Technol 35:581–590

    Google Scholar 

  23. Grewal NS, Saxena SC (1983) Experimental studies of heat transfer between a bundle of horizontal tubes and a gas solid fluidized bed of small particles. Ind Eng Chem Process Des Dev 22(3):367–376

    Article  Google Scholar 

  24. Molerus O, Mattmann W (1992) Heat transfer mechanisms in gas fluidized beds. Chem Eng Technol 15:139–150240–244 and 291–294

    Article  Google Scholar 

  25. Dietz S (1994) Wärmeübergang in blasenbildenden Wirbelschichten. Diss. Univ. Erlangen-Nürnberg

    Google Scholar 

  26. Haid M (1997) Correlations for the prediction of heat transfer to liquid–solid fluidized beds. Chem Eng Process 36:143–147

    Article  Google Scholar 

  27. Haid M, Martin H, Müller-Steinhagen H (1994) Heat transfer to liquid–solid fluidized beds. Chem Eng Process 33:211–225

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this entry

Cite this entry

Martin, H. (2010). M5 Heat Transfer in Fluidized Beds. In: VDI Heat Atlas. VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77877-6_98

Download citation

Publish with us

Policies and ethics