Skip to main content

G1 Heat Transfer in Pipe Flow

  • Reference work entry
  • First Online:
VDI Heat Atlas

Part of the book series: VDI-Buch ((VDI-BUCH))

1 Flow Through Pipes, Critical Reynolds Number

Pipe flow is always laminar if the Reynolds number is less than Re = 2300, and is said to be turbulent at higher values. There is no doubt that turbulent flow sets in at Re > 104. In the transition region of 2300 < Re < 104, the type of flow is influenced by the nature of the inlet stream and the form of the pipe inlet.

2 Definition of Heat Transfer Coefficient

The average heat transfer coefficient α over a length l of a pipe is defined by

$$ \dot q = \alpha \;\rm \Delta T _{{\rm{LM}}} $$

The variable \( \rm \Delta T _{{\rm{LM}}} \) is the logarithmic mean temperature difference and is given by

$$ \rm \Delta T _{{\rm{LM}}} = {{(T _{\rm{w}} - T _{\rm{i}} ) - (T _{\rm{w}} - T _{\rm{o}} )} \over {\ln {\displaystyle{T _{\rm{w}} - T _{\rm{i}} } \over {\displaystyle T _{\rm{w}} - T _{\rm{o}} }}}} $$

where \( T _{\rm{i}} \) and \( T _{\rm{o}} \) are the inlet and outlet temperatures of the flowing medium and \( T _{\rm{w}} \)is the constant...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

8 Bibliography

  1. Sha RK, London AL (1978) Laminar flow forced convection in ducts. Academic Press, New York/San Francisco, CA/London

    Google Scholar 

  2. Gnielinski V (1989) Zur Wärmeübertragung bei laminarer Rohrströmung und konstanter Wandtemperatur. Chem-Ing-Techn 61:160–161

    Article  Google Scholar 

  3. Pohlhausen E (1921) Der Wärmeaustausch zwischen festen Körpern und Flüssigkeiten mit kleiner Reibung und kleiner Wärmeleitung. Z angew Math Mech 1:115–121

    Article  MATH  Google Scholar 

  4. Martin H (1990) Lecture on heat transfer II. Universitaet Karlsruhe (TH), Karlsruhe, Germany

    Google Scholar 

  5. Stephan K (1959) Wärmeübergang bei turbulenter und bei laminarer Strömung in Rohren und ebenen Spalten. Chem-Ing-Techn 31:773–778

    Article  Google Scholar 

  6. Kays WM, Nicoll WB (1963) Laminar flow heat transfer to a gas with large temperature differences. J Heat Transfer 85:329/338

    Article  Google Scholar 

  7. Davenport ME, Leppert G (1965) The effect of transverse temperature gradients on the heat transfer and friction for laminar flow of gases. J Heat Transfer 87:1919–1996

    Article  Google Scholar 

  8. Bankstone CA, Sibbit WL, Skoglund VJ (1966) Stability of gas flow distribution among parallel heated channels, 2nd Propulsion Joint Specialist Conf., Colorado Springs, AIAA Paper No. 66–589

    Google Scholar 

  9. Sieder EN, Tate GE (1936) Heat transfer and pressure drop of liquids in tubes. Ind Eng Chem 8:1429–1435

    Article  Google Scholar 

  10. Hufschmidt W, Burck E (1968) Einfluss temperaturabhängiger Stoffwerte auf den Wärmeübergang bei turbulenter Strömung von Flüssigkeiten in Rohren bei hohen Wärmestromdichten und Prandtlzahlen. Int J Heat Mass Transfer 11:1041–1048

    Article  Google Scholar 

  11. Gauler K (1972) Wärme- und Stoffübertragung an eine mitbewegte Grenzfläche bei Grenzschichtströmung. Universitaet Karlsruhe (TH), Karlsruhe, GermanyDr-Ing. Diss.,

    MATH  Google Scholar 

  12. Spang B (1996) Einfluss der thermischen Randbedingungen auf den laminaren Wärmeübergang im Kreisrohr bei hydrodynamischer Einlaufströmung. Heat Mass Transfer 31:199–204

    Article  Google Scholar 

  13. Herwig H (1985) The effect of variable properties on momentum and heat transfer in a tube with constant heat flux across the wall. Int J Heat Mass Tranf 28:423–431

    Article  Google Scholar 

  14. Gnielinski V (1976) New equations for heat and mass transfer in turbulent pipe and channel flow. Int Chem Eng 16:359–368

    Google Scholar 

  15. Petukhov BS, Kirillov VV (1958) On heat exchange at turbulent flow of liquids in pipes (in Russian). Teploenergetika 4:63–68

    Google Scholar 

  16. Hausen H (1943) Darstellung des Wärmeüberganges in Rohren durch verallgemeinerte Potenzbeziehungen. Verfahrenstechn, Z VDI-Beiheft 8(4):91–98

    MathSciNet  Google Scholar 

  17. Konakov PK (1946) A new correlation fort he friction coefficient in smooth tubes. Berichte der Akademie der Wissenschaften der UdSSR. Band LI 51:503–506

    MathSciNet  Google Scholar 

  18. Martin H (2003) Lecture on heat transfer I. Universitaet Karlsruhe (TH), Karlsruhe, Germany

    Google Scholar 

  19. Churchill SW, Zajic S (2002) Prediction of fully developed turbulent convection with minimal explicit empiricism. AIChE-J 48:927–940

    Article  Google Scholar 

  20. Rotta JC (1972) Turbulente Strömungen. Verlag Teubner, Stuttgart, Germany

    Book  MATH  Google Scholar 

  21. Gnielinski V (1995) Ein neues Berechnungsverfahren für die Wärmeübertragung im Übergangsbereich zwischen laminarer und turbulenter Rohrströmung. Forsch im Ing-Wes 61:240–248

    Article  Google Scholar 

  22. Hackl A, Gröll W (1969) Zum Wärmeübergangsverhalten zähflüssiger Öle. Verfahrenstechn 3:141–145

    Google Scholar 

  23. Hausen H (1969) Comments to [22]. Verfahrenstechn 3:355/480

    Google Scholar 

  24. Gregorig R (1976) The effect of nonlinear temperature dependent Prandtl number on heat transfer of fully developed flow of liquids in a straight tube. Wärme- und Stoffübertragung 9:61–72

    Article  Google Scholar 

  25. Heinemann JB. Argonne National Laboratory, ANL–213, 196.

    Google Scholar 

  26. Gregorig R (1973) Wärmeaustausch und Wärmeaustauscher. Verlag Sauerländer, Aarau u. Frankfurt/M, Germany, p 171

    Google Scholar 

  27. Grass G (1956) Wärmeübergang an turbulent strömende Gase im Rohreinlauf. Allg Wärmetechn 7:58–64Argonne National Laboratory, ANL-213, 196

    Google Scholar 

  28. Boelter LMK, Young G, Iversen HW (1948) An investigation of aircraft heaters, XXVII-distribution of heat transfer rate in the entrance section of a circular tube. Nat Adv Comm Aeron NACA TN 1451, Washington

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this entry

Cite this entry

Gnielinski, V. (2010). G1 Heat Transfer in Pipe Flow. In: VDI Heat Atlas. VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77877-6_34

Download citation

Publish with us

Policies and ethics