Skip to main content

Intron-Mediated Regulation of Gene Expression

  • Chapter
Nuclear pre-mRNA Processing in Plants

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 326))

Introns can significantly affect gene expression in plants and many other eukaryotes in a variety of ways. Several types of gene regulation, both positive and negative, that involve plant introns are reviewed in this chapter. Some introns contain enhancer elements or alternative promoters, while many others elevate mRNA accumulation by a different process that has been named intron-mediated enhancement (IME). The introns involved in IME must be within transcribed sequences near the start of a gene and in their natural orientation to increase expression. The intron sequences involved are still poorly defined, and the mechanism of IME remains mysterious. A model of IME is presented in which introns increase transcript elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

IME:

Intron-mediated enhancement

NMD:

Nonsense-mediated-mRNA decay

EJC:

Exon junction complex

GUS:

β-Glucuronidase

UTR:

Untranslated region

PolII:

RNA polymerase II

CTD:

Carboxy-terminal domain

mRNA:

Messenger RNA

References

  • Behm-Ansmant I, Izaurralde E (2006) Quality control of gene expression: a stepwise assembly pathway for the surveillance complex that triggers nonsense-mediated mRNA decay. Genes Dev 20:391–398

    Article  PubMed  CAS  Google Scholar 

  • Belostotsky DA, Rose AB (2005) Plant gene expression in the age of systems biology: integrating transcriptional and post-transcriptional events. Trends Plant Sci 10:347–353

    Article  PubMed  CAS  Google Scholar 

  • Busch MA, Bomblies K, Weigel D (1999) Activation of a floral homeotic gene in Arabidopsis. Science 285:585–587

    Article  PubMed  CAS  Google Scholar 

  • Callis J, Fromm M, Walbot V (1987) Introns increase gene expression in cultured maize cells. Genes Dev 1:1183–1200

    Article  PubMed  CAS  Google Scholar 

  • Casas-Mollano JA, Lao NT, Kavanagh TA (2006) Intron-regulated expression of SUVH3, an Arabidopsis Su(var) 3–9 homologue. J Exp Bot 57:3301–3311

    Article  PubMed  CAS  Google Scholar 

  • Chaubet-Gigot N, Kapros T, Flenet M, Kahn K, Gigot C, Waterborg JH (2001) Tissue-dependent enhancement of transgene expression by introns of replacement histone H3 genes of Arabidopsis. Plant Mol Biol 45:17–30

    Article  PubMed  CAS  Google Scholar 

  • Chee PP, Klassy RC, Slightom JL (1986) Expression of a bean storage protein ‘phaseolin minigene’ in foreign plant tissues. Gene 41:47–57

    Article  PubMed  CAS  Google Scholar 

  • Chung BY, Simons C, Firth AE, Brown CM, Hellens RP (2006) Effect of 5’UTR introns on gene expression in Arabidopsis thaliana. BMC Genomics 7:120

    Article  PubMed  Google Scholar 

  • Clancy M, Hannah LC (2002) Splicing of the maize Sh1 first intron is essential for enhancement of gene expression, and a T-rich motif increases expression without affecting splicing. Plant Physiol 130:918–929

    Article  PubMed  CAS  Google Scholar 

  • Clancy M, Vasil V, Hannah LC, Vasil IK (1994) Maize Shrunken-1 intron and exon regions increase gene expression in maize protoplasts. Plant Sci 98:151–161

    Article  CAS  Google Scholar 

  • Curi GC, Chan RL, Gonzalez DH (2005) The leader intron of Arabidopsis thaliana genes encoding cytochrome c oxidase subunit 5c promotes high-level expression by increasing transcript abundance and translation efficiency. J Exp Bot 56:2563–2571

    Article  PubMed  CAS  Google Scholar 

  • Curie C, Axelos M, Bardet C, Atanassova R, Chaubet N, Lescure B (1993) Modular organization and developmental activity of an Arabidopsis thaliana EF-1α gene promoter. Mol Gen Genet 238:428–436

    Article  PubMed  CAS  Google Scholar 

  • Dean C, Favreau M, Bond-Nutter D, Bedbrook J, Dunsmuir P (1989) Sequences downstream of translation start regulate quantitative expression of two petunia rbcS genes. Plant Cell 1:201–208

    Article  PubMed  CAS  Google Scholar 

  • Deyholos MK, Sieburth LE (2000) Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. Plant Cell 12:1799–1810

    Article  PubMed  CAS  Google Scholar 

  • Dimaano C, Ullman KS (2004) Nucleocytoplasmic transport: integrating mRNA production and turnover with export through the nuclear pore. Mol Cell Biol 24:3069–3076

    Article  PubMed  CAS  Google Scholar 

  • Donath M, Mendel R, Cerff R, Martin W (1995) Intron-dependent transient expression of the maize GapA1 gene. Plant Mol Biol 28:667–676

    Article  PubMed  CAS  Google Scholar 

  • Fu D, Szucs P, Yan L, Helguera M, Skinner JS, von Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273:54–65

    Article  PubMed  CAS  Google Scholar 

  • Gallie DR, Young TE (1994) The regulation of gene expression in transformed maize aleurone and endosperm protoplasts. Plant Physiol 106:929–939

    Article  PubMed  CAS  Google Scholar 

  • Garbarino JE, Oosumi T, Belknap WR (1995) Isolation of a polyubiquitin promoter and its expression in transgenic potato plants. Plant Physiol 109:1371–1378

    Article  PubMed  CAS  Google Scholar 

  • Gidekel M, Jimenez B, Herrera-Estrella L (1996) The first intron of the Arabidopsis thaliana gene coding for elongation factor 1β contains an enhancer-like element. Gene 170:201–206

    Article  PubMed  CAS  Google Scholar 

  • Goodall GJ, Filipowicz W (1991) Different effects of intron nucleotide composition and secondary structure on pre-mRNA splicing in monocot and dicot plants. EMBO J 10:2635–2644

    PubMed  CAS  Google Scholar 

  • Hong X, Scofield DG, Lynch M (2006) Intron size, abundance, and distribution within untranslated regions of genes. Mol Biol Evol 23:2392–2404

    Article  PubMed  CAS  Google Scholar 

  • Isshiki M, Yamamoto Y, Satoh H, Shimamoto K (2001) Nonsense-mediated decay of mutant waxy mRNA in rice. Plant Physiol 125:1388–1395

    Article  PubMed  CAS  Google Scholar 

  • Jeon JS, Lee S, Jung KH, Jun SH, Kim C, An G (2000) Tissue-preferential expression of a rice α-tubulin gene, OsTubA1, mediated by the first intron. Plant Physiol 123:1005–1014

    Article  PubMed  CAS  Google Scholar 

  • Jeong YM, Mun JH, Lee I, Woo JC, Hong CB, Kim SG (2006) Distinct roles of the first introns on the expression of Arabidopsis profilin gene family members. Plant Physiol 140:196–209

    Article  PubMed  CAS  Google Scholar 

  • Keith B, Chua N-H (1986) Monocot and dicot pre-mRNAs are processed with different efficiencies in transgenic tobacco. EMBO J 5:2419–2425

    PubMed  CAS  Google Scholar 

  • Kertesz S, Kerenyi Z, Merai Z, Bartos I, Palfy T, Barta E, Silhavy D (2006) Both introns and long 3′-UTRs operate as cis-acting elements to trigger nonsense-mediated decay in plants. Nucl Acids Res 34:6147–6157

    Article  PubMed  CAS  Google Scholar 

  • Kim MJ, Kim H, Shin JS, Chung CH, Ohlrogge JB, Suh MC (2006) Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5′-UTR intron. Mol Genet Genomics 276:351–368

    Article  PubMed  CAS  Google Scholar 

  • Kooiker M, Airoldi CA, Losa A, Manzotti PS, Finzi L, Kater MM, Colombo L (2005) BASIC PENTACYSTEINE1, a GA binding protein that induces conformational changes in the regulatory region of the homeotic Arabidopsis gene SEEDSTICK. Plant Cell 17:722–729

    Article  PubMed  CAS  Google Scholar 

  • Kuhlemeier C, Fluhr R, Chua N-H (1988) Upstream sequences determine the difference in transcript abundance of pea rbcS genes. Mol Gen Genet 212:405–411

    Article  CAS  Google Scholar 

  • Last DI, Brettell, RIS, Chamberlain DA, Chaudhury A.M, Larkin PJ, Marsh E, Peacock WJ, Dennis ES (1991) pEmu: an improved promoter for gene expression in cereal cells. Theor Appl Genet 81:581–588

    Article  CAS  Google Scholar 

  • Le Hir H, Nott A, Moore MJ (2003) How introns influence and enhance eukaryotic gene expression. Trends Biochem Sci 28:215–220

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Cullen BR (2003) Analysis of the stimulatory effect of splicing on mRNA production and utilization in mammalian cells. RNA 9:618–630

    Article  PubMed  CAS  Google Scholar 

  • Luehrsen KR, Walbot V (1994) Addition of A- and U-rich sequence increases the splicing efficiency of a deleted form of a maize intron. Plant Mol Biol 24:449–463

    Article  PubMed  CAS  Google Scholar 

  • Lumbreras V, Stevens DR, and Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14:441–447

    Article  CAS  Google Scholar 

  • Maniatis T, Reed R (2002) An extensive network of coupling among gene expression machines. Nature 416:499–506

    Article  PubMed  CAS  Google Scholar 

  • Maquat LE (2004a) Nonsense-mediated mRNA decay: A comparative analysis of different species. Curr Genomics 5:175–190

    Article  CAS  Google Scholar 

  • Maquat LE (2004b) Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol 5:89–99

    Article  PubMed  CAS  Google Scholar 

  • Mascarenhas D, Mettler IJ, Pierce DA, Lowe HW (1990) Intron-mediated enhancement of heterologous gene expression in maize. Plant Mol Biol 15:913–920

    Article  PubMed  CAS  Google Scholar 

  • Morello L, Bardini M, Cricri M, Sala F, Breviario D (2006) Functional analysis of DNA sequences controlling the expression of the rice OsCDPK2 gene. Planta 223:479–491

    Article  PubMed  CAS  Google Scholar 

  • Morello L, Bardini M, Sala F, Breviario D (2002) A long leader intron of the Ostub16 rice β-tubulin gene is required for high-level gene expression and can autonomously promote transcription both in vivo and in vitro. Plant J 29:33–44

    Article  PubMed  CAS  Google Scholar 

  • Nash J, Walbot V (1992) Bronze-2 gene expression and intron splicing patterns in cells and tissues of Zea mays L. Plant Physiol 100:464–471

    Article  PubMed  CAS  Google Scholar 

  • Nott A, Le Hir H, Moore MJ (2004) Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev 18:210–222

    Article  PubMed  CAS  Google Scholar 

  • Nott A, Meislin SH, Moore MJ (2003) A quantitative analysis of intron effects on mammalian gene expression. RNA 9:607–617

    Article  PubMed  CAS  Google Scholar 

  • Plesse B, Criqui MC, Durr A, Parmentier Y, Fleck J, Genschik P (2001) Effects of the polyubiquitin gene Ubi.U4 leader intron and first ubiquitin monomer on reporter gene expression in Nicotiana tabacum. Plant Mol Biol 45:655–667

    Article  PubMed  CAS  Google Scholar 

  • Reddy ASN (2001) Nuclear pre-mRNA splicing in plants. Crit Rev Plant Sci 20:523–571

    Article  CAS  Google Scholar 

  • Rethmeier N, Seurinck J, Van Montagu M, Cornelissen M (1997) Intron-mediated enhancement of transgene expression in maize is a nuclear, gene-dependent process. Plant J 12:895–899

    Article  PubMed  CAS  Google Scholar 

  • Rose AB (2002) Requirements for intron-mediated enhancement of gene expression in Arabidopsis. RNA 8:1444–1453

    Article  PubMed  CAS  Google Scholar 

  • Rose AB (2004) The effect of intron location on intron-mediated enhancement of gene expression in Arabidopsis. Plant J 40:744–751

    Article  PubMed  CAS  Google Scholar 

  • Rose AB, Beliakoff JA (2000) Intron-mediated enhancement of gene expression independent of unique intron sequences and splicing. Plant Physiol 122:535–542

    Article  PubMed  CAS  Google Scholar 

  • Rose A.B, Last RL (1997) Introns act post-transcriptionally to increase expression of the Arabidopsis thaliana tryptophan pathway gene PAT1. Plant J 11:455–464

    Article  PubMed  CAS  Google Scholar 

  • Sheldon CC, Conn AB, Dennis ES, Peacock WJ (2002) Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression. Plant Cell 14:2527–2537

    Article  PubMed  CAS  Google Scholar 

  • Sieburth LE, Meyerowitz EM (1997) Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell 9:355–365

    Article  PubMed  CAS  Google Scholar 

  • Sinibaldi RM, Mettler IJ (1992) Intron splicing and intron-mediated enhanced expression in monocots. In Cohn, W.E. and Moldave, K. (eds.), Progress in Nucleic Acid Research and Molecular Biology. Academic Press, New York, Vol. 42, pp. 229–257

    Google Scholar 

  • Snowden KC, Buchholz WG, Hall TC (1996) Intron position affects expression from the tpi promoter in rice. Plant Mol Biol 31:689–692

    Article  PubMed  CAS  Google Scholar 

  • Sridhar VV, Surendrarao A, Liu Z (2006) APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development. Development 133:3159–3166

    Article  PubMed  CAS  Google Scholar 

  • Stark K, Kirk DL, Schmitt R (2001) Two enhancers and one silencer located in the introns of regA control somatic cell differentiation in Volvox carteri. Genes Dev 15:1449–1460

    Article  PubMed  CAS  Google Scholar 

  • Steinmetz EJ (1997) Pre-mRNA processing and the CTD of RNA polymerase II: the tail that wags the dog? Cell 89:491–494

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Mita S, Ohta, S, Kyozuka J, Shimamoto K, Nakamura K (1990) Enhancement of foreign gene expression by a dicot intron in rice but not in tobacco is correlated with an increased level of mRNA and an efficient splicing of the intron. Nucl Acids Res 18:6767–6770

    Article  PubMed  CAS  Google Scholar 

  • Ueki J, Komari T, Imaseki H (2004) Enhancement of reporter-gene expression by insertions of two introns in maize and tobacco protoplasts. Plant Biotech 21:15–24

    CAS  Google Scholar 

  • Vasil V, Clancy M, Ferl, RJ, Vasil IK, Hannah LC (1989) Increased gene expression by the first intron of maize Shrunken-1 locus in grass species. Plant Physiol 91:1575–1579

    Article  PubMed  CAS  Google Scholar 

  • Vitale A, Wu RJ, Cheng Z, Meagher RB (2003) Multiple conserved 5′ elements are required for high-level pollen expression of the Arabidopsis reproductive actin ACT1. Plant Mol Biol 52:1135–1151

    Article  PubMed  CAS  Google Scholar 

  • Weise A, Rodriguez-Franco M, Timm B, Hermann M, Link S, Jost W, Gorr G (2006) Use of Physcomitrella patens actin 5′ regions for high transgene expression: importance of 5′ introns. Appl Microbiol Biotechnol 70:337–345

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Yu H, Hall TC (1994) Rice triosephosphate isomerase gene 5′ sequence directs β-glucuronidase activity in transgenic tobacco but requires an intron for expression in rice. Plant Physiol 106:459–467

    Article  PubMed  CAS  Google Scholar 

  • Zhang S-H, Lawton MA, Hunter T, Lamb CJ (1994) atpk1, a novel ribosomal protein kinase gene from Arabidopsis. I. Isolation, characterization, and expression. J Biol Chem 269:17586–17592

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rose, A.B. (2008). Intron-Mediated Regulation of Gene Expression. In: Reddy, A.S.N., Golovkin, M. (eds) Nuclear pre-mRNA Processing in Plants. Current Topics in Microbiology and Immunology, vol 326. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76776-3_15

Download citation

Publish with us

Policies and ethics