Skip to main content

Bounds of the Ability to Destroy Precise Coincidences by Spike Dithering

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4729))

Abstract

Correlation analysis of neuronal spiking activity relies on the availability of distributions for assessing significance. At present, these distributions can only be created by surrogate data. A widely used surrogate, termed dithering, adds a small random offset to all spikes. Due to the biological noise, simultaneous spike emission is registered within a finite coincidence window. Established methods of counting are: (i) partitioning the temporal axis into disjunct bins and (ii) integrating the counts of precise coincidences over multiple relative temporal shifts of the two spike trains. Here, we rigorously analyze for both methods the effectiveness of dithering in destroying precise coincidences. Closed form expressions and bounds are derived for the case where the dither range equals the coincidence window. In this situation disjunct binning detects half of the original coincidences, the multiple shift method recovers three quarters. Thus, only a dither range much larger than the detection window qualifies as a generator of suitable surrogates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Riehle, A., Grün, S., Diesmann, M., Aertsen, A.: Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278(5345), 1950–1953 (1997)

    Article  Google Scholar 

  2. Nowak, L.G., Munk, M.H., Nelson, J.I., James, A., Bullier, J.: Structural basis of cortical synchronization. I. Three types of interhemispheric coupling. J. Neurophysiol. 74(6), 2379–2400 (1995)

    Google Scholar 

  3. Grün, S., Diesmann, M., Aertsen, A.: ‘Unitary events’ in multiple single-neuron spiking activity: I. Detection and significance. Neural Comput. 14(1), 43–80 (2002)

    Article  MATH  Google Scholar 

  4. Pipa, G., Grün, S.: Non-parametric significance estimation of joint-spike events by shuffling and resampling. Neurocomputing 52–54, 31–37 (2003)

    Article  Google Scholar 

  5. Ikegaya, Y., Aaron, G., Cossart, R., Aronov, D., Lampl, I., Ferster, D., Yuste, R.: Synfire chains and cortical songs: temporal modules of cortical activity. Science 5670(304), 559–564 (2004)

    Article  Google Scholar 

  6. Hatsopoulos, N., Geman, S., Amarasingham, A., Bienenstock, E.: At what time scale does the nervous system operate? Neurocomputing 52–54, 25–29 (2003)

    Article  Google Scholar 

  7. Pipa, G., Diesmann, M., Grün, S.: Significance of joint-spike events based on trial-shuffling by efficient combinatorial methods. Complexity 8(4), 79–86 (2003)

    Article  MathSciNet  Google Scholar 

  8. Grün, S., Riehle, A., Diesmann, M.: Effect of cross-trial nonstationarity on joint-spike events. Biol. Cybern. 88(5), 335–351 (2003)

    Article  MATH  Google Scholar 

  9. Pipa, G., Riehle, A., Grün, S.: Validation of task-related excess of spike coincidences based on neuroxidence. Neurocomputing 70(10–12), 2064–2068 (2007)

    Article  Google Scholar 

  10. Davies, R.M., Gerstein, G.L., Baker, S.N.: Measurement of time-dependent changes in the irregularity of neuronal spiking. J. Neurophysiol. 96, 906–918 (2006)

    Article  Google Scholar 

  11. Date, A., Bienenstock, E., Geman, S.: On the temporal resolution of neural activity. Technical report, Divison of Applied Mathematics, Brown University (1998)

    Google Scholar 

  12. Abeles, M., Gat, I.: Detecting precise firing sequences in experimental data. J. Neurosci. Methods 107(1–2), 141–154 (2001)

    Article  Google Scholar 

  13. Maldonado, P., Babul, C., Singer, W., Rodriguez, E., Berger, D., Grün, S.: Dissociation between discharge rates and synchrony in primary visual cortex of monkeys viewing natural images (submitted)

    Google Scholar 

  14. Gerstein, G.L.: Searching for significance in spatio-temporal firing patterns. Acta Neurobiol. Exp (Wars.) 2(64), 203–207 (2004)

    Google Scholar 

  15. Grün, S., Diesmann, M., Grammont, F., Riehle, A., Aertsen, A.: Detecting unitary events without discretization of time. J. Neurosci. Methods 94(1), 67–79 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francesco Mele Giuliana Ramella Silvia Santillo Francesco Ventriglia

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pazienti, A., Diesmann, M., Grün, S. (2007). Bounds of the Ability to Destroy Precise Coincidences by Spike Dithering. In: Mele, F., Ramella, G., Santillo, S., Ventriglia, F. (eds) Advances in Brain, Vision, and Artificial Intelligence. BVAI 2007. Lecture Notes in Computer Science, vol 4729. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75555-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75555-5_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75554-8

  • Online ISBN: 978-3-540-75555-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics