Skip to main content

The Generalized Gibbs Sampler and the Neighborhood Sampler

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2006

The Generalized Gibbs Sampler (GGS) is a recently proposed Markov chain Monte Carlo (MCMC) technique that is particularly useful for sampling from distributions defined on spaces in which the dimension varies from point to point or in which points are not easily defined in terms of co-ordinates. Such spaces arise in problems involving model selection and model averaging and in a number of interesting problems in computational biology. Such problems have hitherto been the domain of the Reversible-jump Sampler, but the method described here, which generalizes the well-known conventional Gibbs Sampler, provides an alternative that is easy to implement and often highly efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Drmanac, S. Drmanac, A. Strezoska, T. Paunesku, I. Labat, M. Zeremski, J. Snoddy, W. K. Funkhouser, B. Koop, L. Hood, and R. Crkvenjakov. DNA sequence determination by hybridization: a strategy for efficient large-scale sequencing. Science, 260:1649–1952, 1993.

    Article  Google Scholar 

  2. S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE T. Pattern Anal., 6:721–741, 1984.

    Article  MATH  Google Scholar 

  3. P. J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82:711–732, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. F. Gelfand and A. F. M. Smith. Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc., 85:398–409, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  5. W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57:97–109, 1970.

    Article  MATH  Google Scholar 

  6. J. M. Keith, P. Adams, D. Bryant, K. R. Mitchelson, D. A. E. Cochran, and G. H. Lala. A simulated annealing algorithm for finding consensus sequences. Bioinformatics, 18:1494–1499, 2002.

    Article  Google Scholar 

  7. J. M. Keith, P. Adams, D. Bryant, K. R. Mitchelson, D. A. E. Cochran, and G. H. Lala. Inferring an original sequence from erroneous copies: a Bayesian approach. In Proceedings of the First Asia-Pacific Bioinformatics Conference, volume 19 of Conferences in Research and Practice in Information Technology, pages 23–28, 2003.

    Google Scholar 

  8. J. M. Keith, P. Adams, D. Bryant, D. A. E. Cochran, G. H. Lala, and K. R. Mitchelson. Algorithms for sequence analysis via mutagenesis. Bioinformatics, 20:2401–2410, 2004.

    Article  Google Scholar 

  9. J. M. Keith, P. Adams, M. A. Ragan, and D. Bryant. Sampling phylogenetic tree space with the generalized Gibbs sampler. Molecular Phylogenetics and Evolution, 34:459–468, 2005.

    Article  Google Scholar 

  10. J. M. Keith. Segmenting eukaryotic genomes with the generalized Gibbs sampler. Journal of Computational Biology, 2006. In press.

    Google Scholar 

  11. J. M. Keith, D. P. Kroese, and D. Bryant. A Generalized Markov sampler. Methodology and Computing in Applied Probability, 6:29–53, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Margulies, M. Egholm, W. E. Altman, S. Attiya, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437:376–380, 2005.

    Google Scholar 

  13. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller. Equations of state calculations by fast computing machines. J. Chem. Phys., 21:1087–1092, 1953.

    Article  Google Scholar 

  14. R. M. Neal. Slice sampling. Ann. Stat., 31(3):705–767, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  15. P. A. Pevzner. DNA Physical Mapping and Alternating Eulerian Cycles in Colored Graphs. Algorithmica, 13:77–105, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Shendure, G. J. Porreca, N. B. Reppas, X. Lin, J. P. McCutcheon, A. M. Rosenbaum, M. D. Wang, K. Zhang, R. D. Mitra, and G. M. Church. Accurate Multiplex Polony Sequencing of an Evolved Bacterial Genome. Science, 309:1728–1732, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keith, J., Sofronov, G., Kroese, D. (2008). The Generalized Gibbs Sampler and the Neighborhood Sampler. In: Keller, A., Heinrich, S., Niederreiter, H. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74496-2_31

Download citation

Publish with us

Policies and ethics