Skip to main content

Insect Herbivores, Nutrient Cycling and Plant Productivity

  • Chapter
Insects and Ecosystem Function

Part of the book series: Ecological Studies ((ECOLSTUD,volume 173))

Summary

We review the various ways in which insect herbivores affect ecosystem function, focusing particularly on their impacts on decomposition, nutrient cycling and plant productivity. Many of the most profound effects of insects on these processes occur below ground and until recently have been considered relatively inaccessible to study. However, new approaches, particularly the development of stable isotope techniques and more inventive uses of controlled environment studies, have allowed significant advances in our understanding of the role of soil biota in both below- and aboveground processes. Undoubtedly, one of their most important roles is to physically break up organic matter within the soil and make it accessible to the microbial component, but these new techniques mean we now know far more about the more indirect effects of soil biota as well, such as the impact of root-feeding herbivores on the rhizosphere. In addition, the development of more quantitative techniques for assessing canopy herbivory and the impacts of defoliation on nitrogen cycling in forests has provided new evidence for the impact of aboveground foliovores on soil processes. We draw on the literature and on our own work to summarize the ‘state of play’. We highlight some of the progress that has been made in the study of the role of insect herbivores in ecosystem function, examine some intriguing interactions between insect herbivores and other organisms, and draw attention to some neglected impacts on ecosystem processes. Thus we highlight gaps in our current understanding and hence areas that future research might profitably examine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamson WG, Weis AE (1986) Nutritional ecology of arthropod gall-makers. In: Slansky F, Rodriguez JG (eds) Nutritional ecology of insects mites and spiders. Academic Press, San Diego, pp 235 - 258

    Google Scholar 

  • Andersen DC (1987) Below-ground herbivory in natural communities: a review emphasizing fossorial animals. Q Rev Biol 62: 261 - 286

    Article  Google Scholar 

  • Bardgett RD, Keiller S, Cook R, Gilburn AS (1998a) Dynamic interactions between soil animals and microorganisms in upland grassland soils amended with sheep dung: a microcosm experiment. Soil Biol Biochem 30: 531 - 539

    Article  CAS  Google Scholar 

  • Bardgett RD, Wardle DA, Yeates GW (1998b) Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biol Biochem 30: 1867 - 1878

    Article  CAS  Google Scholar 

  • Basaglia M, Concheri G, Cardinali S, Pasti-Grigsby MB, Nuti MP (1992) Enhanced degradation of ammonium-pretreated wheat straw by lignocelluloytic Streptomycestes spp. Can J Microbiol 38: 1022 - 1025

    Article  CAS  Google Scholar 

  • Beattie AJ, Hughes LH (2002) Ant–plant interactions. In: Herrera CM, Pellmyr O (eds) Plant–animal interactions: an evolutionary approach. Blackwell, Oxford, pp 211 - 235

    Google Scholar 

  • Beyers RJ, Odum HT (1993) Ecological microcosms. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Bigger PS, Marvier MA (1998) How different would a world without herbivory be? A search for generality in ecology. Integrative Biol 1: 60 - 67

    Article  Google Scholar 

  • Bignell DE, Eggleton P, Nunes L, Thomas KL (1997) Termites as mediators of carbon fluxes in tropical forests: budgets for carbon dioxide and methane emissions. In: Watt AD, Stork NE, Hunter MD (eds) Forests and insects. Chapman and Hall, London, pp 109 - 134

    Google Scholar 

  • Blomqvist MM, Olff H, Blaauw MB, Bongers T, Van der Putten WH (2000) Interactions between above-and belowground biota: importance for small-scale vegetation mosaics in a grassland ecosystem. Oikos 90: 582 - 598

    Article  Google Scholar 

  • Blossey B, Hunt-Joshi TR (2003) Belowground herbivory by insects: influence on plants and aboveground herbivores. Annu Rev Entomol 48: 521 - 547

    Article  CAS  PubMed  Google Scholar 

  • Blundell AG, Peart DR (2000) High abscission rates of damaged expanding leaves: field evidence from seedlings of a Bornean rain forest tree.Am J Bot 78: 1693 - 1698

    Google Scholar 

  • Boddy L, Wells JM, Culshaw C (1999) Fractal analysis in studies of mycelium in soil. Geoderma 88: 301 - 328

    Article  Google Scholar 

  • Bokhari UG, Singh JS (1974) Effects of temperature and clipping on growth, carbohydrate reserves and root exudation of western wheatgrass in hydroponic culture. Crop Sci 14: 790 - 794

    Article  Google Scholar 

  • Bormann FH, Likens GE (1979) Patterns and process in a forested ecosystem. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Bradford MA, Jones TH, Bardgett RD, Black HIJ, Boag B, Bonkowski M, Cook R, Eggers T, Gange AC, Grayston SJ, Kandeler E, McCaig AE, Newington JE, Prosser JI, Setala H, Staddon PL, Tordoff GM, Tscherko D, Lawton JH (2002) Impacts of soil faunal community composition on model grassland ecosystems. Science 298: 615 - 618

    Article  CAS  PubMed  Google Scholar 

  • Bredowski JJM, Zeilinga R (1987) Transition from heathland to grassland: damaging effects of the heather beetle. J Ecol 75: 159 - 175

    Article  Google Scholar 

  • Breznak JA (1982) Intestinal microbiota of termites and other xylophagous insects. Annu Rev Microb 36: 323 - 343

    Article  CAS  Google Scholar 

  • Burger AE (1978) Terrestrial invertebrates: a food resource for birds at Marion Island. S Afr J Ant Res 8: 87 - 99

    Google Scholar 

  • Callaham MA, Whiles MR, Meyer CK, Brock BL, Charlton RE (2000) Feeding ecology and emergence production of annual cicadas ( Homoptera: Cicadidae) in tallgrass prairie. Oecologia 123: 535-542

    Google Scholar 

  • Cherret JM (1986) History of the leaf-cutting ant problem. In: Lofgren CS, Vander Meer RK (eds) Fire ants and leaf-cutting ants: biology and management. Westview Press, Boulder, Colorado, pp 10 - 17

    Google Scholar 

  • Choudhury D (1984) Aphids and plant fitness: a test of Owen and Weigert’s hypothesis. Oikos 43: 401 - 402

    Article  Google Scholar 

  • Christenson LM, Lovett GM, Mitchell MJ, Groffman PM (2002) The fate of nitrogen in gypsy moth frass deposited to an oak forest floor. Oecologia 131: 444 - 452

    Article  Google Scholar 

  • Coleman DC (1976) A review of root production processes and their influence on soil biota in terrestrial ecosystems. In: Anderson JM, Macfadyen A (eds) The role of terrestrial and aquatic organisms in decomposition processes. Blackwell, London, pp 417 - 434

    Google Scholar 

  • Coley PD, Aide TM (1991) A comparison of herbivory and plant defences in temperate and tropical broad-leaved forest. In: Price PW, Lewinsohn TM, Fernandes GW, Benson WW (eds) Plant–animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, pp 25 - 49

    Google Scholar 

  • Coley PD, Barrone JA (1996) Herbivory and plant defenses in tropical forests. Annu Rev Ecol Syst 27: 305 - 335

    Article  Google Scholar 

  • Cornelissen JHC (1996) An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J Ecol 84: 573 - 582

    Article  Google Scholar 

  • Crawley MJ (1989) Insect herbivores and plant population dynamics. Annu Rev Entomol 34: 531 - 564

    Article  Google Scholar 

  • Crawley MJ (1997) Plant ecology, 2nd edn. Blackwell Science, Oxford

    Google Scholar 

  • Cyr H, Pace ML (1993) Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature (Lond) 361: 148 - 150

    Article  Google Scholar 

  • Denton CS, Bardgett RD, Cook R, Hobbs PJ (1999) Low amounts of root herbivory positively influence the rhizosphere microbial community in a temperate grassland soil. Soil Biol Biochem 31: 155 - 165

    Article  CAS  Google Scholar 

  • Dyer ML, Acra MA, Wang GM, Coleman DC, Freckman DW, McNaughton SJ, Strain BR (199 1) Source-sink carbon relations in two Panicum coloratum ecotypes in response to herbivory. Ecology 72: 1472 - 1483

    Google Scholar 

  • Dyer ML, Turner CL, Seastedt TR (1993) Herbivory and its consequences. Ecol Appl 3: 10 - 16

    Article  CAS  PubMed  Google Scholar 

  • Eggers T, Jones TH (2000) You are what you eat…or are you? TREE 15: 265 - 266

    PubMed  Google Scholar 

  • Eggleton P, Bignell DE, Sands WA, Mawdsley NA, Lawton JH, Wood TG, Bignell NC (1996) The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Philos Trans R Soc Lond Ser B 351: 51 - 68

    Article  Google Scholar 

  • Eshleman KN, Morgan RP, Webb JR, Deviney FA, Galloway JN (1998) Temporal patterns of nitrogen leakage from mid-Appalachian forested watersheds: role of insect defoliation. Water Resour Res 34: 2005 - 2016

    Article  CAS  Google Scholar 

  • Faeth SH, Conner EF, Simberloff D (1981) Early leaf abscission: a neglected source of mortality for foliovores.Am Nat 177: 409 - 415

    Google Scholar 

  • Fischer RC, Richter R, Wanek W, Mayer V (2002) Plants feed ants: food bodies of myrmecophytic Piper and their significance for the interactions with Pheidole bicornis ants. Oecologia 133: 186 - 192

    Article  Google Scholar 

  • Fischer RC, Wanek W, Richter R, Mayer V (2003) Do ants feed plants? A 15N labelling study of nitrogen fluxes from ants to plants in the mutualism of Pheidole and Piper. J Ecol 91: 126 - 134

    Article  Google Scholar 

  • Fogel R, Hunt G (1979) Fungal and arboreal biomass in a western Oregon Douglas fir ecosystem. Can J Forest Res 9: 245 - 256

    Article  Google Scholar 

  • Folgarait PJ (1998) Ant biodiversity and its relationship to ecosystem functioning: a review. Biodiv Conserv 7: 1221 - 1244

    Article  Google Scholar 

  • Grace JR (1986) The influence of gypsy moth on the composition and nutrient content of litter fall in a Pennsylvania oak forest. For Sci 32: 855 - 870

    Google Scholar 

  • Groombridge B (ed) (1992) Global biodiversity. status of the earth’s living resources. Chapman and Hall, London

    Google Scholar 

  • Hartley SE (1998) The chemical composition of plant galls: are levels of nutrients and secondary compounds controlled by the gall-former? Oecologia 113: 492 - 501

    Article  Google Scholar 

  • Hartley SE, Firn RD (1989) Phenolic biosynthesis, leaf damage, and insect herbivory in birch (Betula pendula). J Chem Ecol 15: 275 - 283

    Article  CAS  PubMed  Google Scholar 

  • Hartley SE, Gardner SM (1995) The response of Philaenus spumarius (Homoptera: Cercopidae) to fertilising and shading a moorland host plant (Calluna vulgaris). Ecol Entomol 20: 396 - 399

    Article  Google Scholar 

  • Hartley SE, Jones CG (1997) Plant chemistry and herbivory; or why the world is green. In: Crawley MJ (ed) Plant ecology, 2nd edn. Blackwell, Oxford, pp 284 - 324

    Google Scholar 

  • Hartley SE, Lawton JH (1992) Host-plant manipulation by gall insects: a test of the nutrition hypothesis. J Anim Ecol 61: 113 - 119

    Article  Google Scholar 

  • Hartley SE, Gardner SM, Mitchell RJ (2003) Indirect effects of grazing and nutrient addition on the Hemiptera community of heather moorlands: the role of soil type, vegetation structure and plant species richness. J Appl Ecol 40: 793 - 803

    Article  Google Scholar 

  • Holland EA, Detling JK (1990) Plant response to herbivory and belowground nutrient cycling. Ecology 71: 1040 - 1049

    Article  Google Scholar 

  • Holland JN (1995) Effects of above ground herbivory on soil microbial biomass in conventional and no-tillage agroecosystems.Appl Soil Ecol 2: 275 - 279

    Google Scholar 

  • Holland JN, Cheng WX, Crossley DA (1996) Herbage-induced changes in plant carbon allocation: assessment of below ground carbon fluxes using carbon-14. Oecologia 107: 87 - 94

    Article  Google Scholar 

  • Hollinger DY (1986) Herbivory and the cycling of nitrogen and phosphorus in isolated California oak tree. Oecologia 70: 219 - 297

    Article  Google Scholar 

  • Hopkin SP (1998) Biology of the springtails. Insecta: Collembola. Oxford University Press, Oxford, 330 pp

    Google Scholar 

  • Houghton JT, Jenkins GJ, Ephraums JJ (1990) Climate change: the IPCC scientific assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Howarth FG (1983) Ecology of cave arthropods. Annu Rev Entomol 28: 365 - 389

    Article  Google Scholar 

  • Hunter MD (2001) Out of sight, out of mind: the impacts of root-feeding insects in natural and managed systems. Agric Forest Entomol 3: 1 - 8

    Article  Google Scholar 

  • Inbar M, Eshel A, Wool D (1995) Interspecific competition among phloem-feeding insects mediated by induced host plant sinks. Ecology 76: 1506 - 1515

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Jakobsen I, Rosendahl L (1990) N2 fixation and root respiration in pea–effects of VAM and phosphorus. Agric Eco Environ 29: 205 - 209

    Article  Google Scholar 

  • Johnson SN, Mayhew PJ, Douglas AE, Hartley SE (2002) Insects as leaf engineers–can leaf-miners alter leaf structure for birch aphids? Funct Ecol 16: 575 - 584

    Article  Google Scholar 

  • Jones TH, Bradford MA (2002) Assessing the functional implications of soil biodiversity in ecosystems. Ecol Res 16: 845 - 858

    Article  Google Scholar 

  • Jones TH, Thompson LJ, Lawton JH, Bezemer TM, Bardgett RD, Blackburn TM, Bruce KD, Cannon PF, Hall GS, Hartley SE, Howson G, Jones CG, Kampichler C, Kandeler E, Ritchie DA (1998) Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystems. Science 280: 221 - 223

    Google Scholar 

  • Jones TH, Bezemer TM, Korner C, Lawton JH, Thompson LJ (2000) Comparing studies of artificial and natural ecosystem responses to CO2 enrichment. Biotronics 29: 1 - 7

    Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Karhu KJ, Neuvonen S (1998) Wood ants and a geometrid defoliator of birch: predation outweighs beneficial effects through the host plant. Oecologia 113: 509 - 516

    Article  Google Scholar 

  • Klironomos JN, Kendrick WB (1995) Stimulative effects of arthropods on endomycorrhizas of sugar maple in the presence of decaying litter. Funct Ecol 90: 528 - 536

    Article  Google Scholar 

  • Klironomos JN, Ursic M (1998) Density-dependent grazing on the extraradical hyphal network of the arbuscular mycorrhizal fungus, Glomus intraradices, by the collembolan, Folsomia candida. Biol Fert Soils 26: 250 - 253

    Article  Google Scholar 

  • Lavelle P (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv Ecol Res 27: 93 - 132

    Article  Google Scholar 

  • Lawton JH (2000) Community ecology in a changing world. In: Kinne O (ed) Excellence in ecology. Ecology Institute, Oldendorf, Germany

    Google Scholar 

  • Loreau M, Naeem S, Inchausti P (eds) (2002) Biodiversity and ecosystem functioning. Synthesis and perspectives. Oxford University Press, Oxford

    Google Scholar 

  • Lovett GM, Ruesink AE (1995) Carbon and nitrogen mineralization from decomposing gypsy moth frass. Oecologia 104: 133 - 138

    Article  Google Scholar 

  • Lovett GM, Christenson LM, Groffman PM, Jones CG, Hart JE, Mitchell MJ (2002) Insect defoliation and nitrogen cycling in forests. Bioscience 52: 335 - 341

    Article  Google Scholar 

  • Lussenhop J (1996) Collembola as mediators of microbial symbiont effects upon soybean. Soil Biol Biochem 28: 363 - 369

    Article  CAS  Google Scholar 

  • Martin MM (199 1) The evolution of cellulose digestion in insects. Phil Trans R Soc Lond Ser B: Biol Sci 333:281-288

    Google Scholar 

  • Masters GJ, Brown VK, Gange AC (1993) Plant mediated interactions between above-and below-ground herbivores. Oikos 66: 48 - 151

    Article  Google Scholar 

  • Mattson WJ, Addy ND (1975) Phytophagous insects as regulators of forest primary production. Science 190: 515 - 522

    Article  Google Scholar 

  • McGinley MA, Dhillion SS, Neumann JC (1994) Environmental heterogeneity and seedling establishment: ant–plant–microbe interactions. Funct Ecol 8: 607 - 615

    Article  Google Scholar 

  • McNaughton SJ, Banyikwa FF, McNaughton MM (1998) Root biomass and productivity in a grazing system: the Serengeti. Ecology 79: 587 - 592

    Article  Google Scholar 

  • Meyer GA (1993) A comparison of the impacts of leaf feeding and sap feeding insects on the growth and allocation of goldenrod. Ecology 74: 1101 - 1116

    Article  Google Scholar 

  • Meyer GA, Whitlow TH (1992) Effects of leaf and sap feeding insects on photosynthetic rates of goldenrod. Oecologia 92: 480 - 489

    Article  Google Scholar 

  • Mikola J, Yeates GW, Barker GM, Wardle DA, Bonner KI (2001) Effects of defoliation intensity on soil food web properties in an experimental grassland community. Oikos: 92 333 - 343

    Article  Google Scholar 

  • Moorhead DL, Reynolds JF (1991) A general model of litter decomposition in the Northern Chihuahuan Desert. Ecol Model 56: 197 - 220

    Article  CAS  Google Scholar 

  • Murray PJ, Hatch DJ, Cliquet JB (1996) Impact of insect herbivory on the growth and nitrogen and carbon contents of white clover (Trifolium repens L.) seedlings. Can J Bot 74: 1591 - 1595

    Article  Google Scholar 

  • Northrup RR, Yu Z, Dahlgren RA, Vogt KA (1995) Polyphenol control of nitrogen release from pine litter. Nature (Lond) 377: 227 - 229

    Article  Google Scholar 

  • Oksanen L, Aunapuu M, Oksanen T, Scneider M, Ekerholm P, Lundberg PA, Armulik T, Aruoja V, Bondestad L (1997) Outlines of food webs in a low arctic tundra landscape in relation to three theories of trophic dynamics. In: Gange A, Brown VK (eds) Multitrophic interactions in terrestrial ecosystems. Blackwell, Oxford, pp 351 - 374

    Google Scholar 

  • Petersen H., Luxton M (1982) A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39: 287 - 388

    Google Scholar 

  • Pilson D (1992) Aphid distribution and the evolution of goldenrod resistance. Evolution 46: 1358 - 1372

    Article  Google Scholar 

  • Price PW, Fernandes GW, Waring GL (1987) Adaptive nature of insect galls. Environ Entomol 16: 15 - 24

    Article  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47: 376 - 391

    Article  Google Scholar 

  • Reichman OJ, Smith SC (1991) Responses to simulated leaf and root herbivory by a biennial Tragopogon dubius. Ecology 72: 116 - 124

    Article  Google Scholar 

  • Reynolds BC, Hunter MD (2001) Responses of soil respiration, soil nutrients and litter decomposition to inputs from canopy herbivores. Soil Biol Biochem 33: 1641 - 1652

    Article  CAS  Google Scholar 

  • Reynolds BC, Crossley DA, Hunter MD (2003) Response of soil invertebrates to forest canopy inputs along a productivity gradient. Pedobiologia 47: 127 - 139

    Google Scholar 

  • Ritchie ME, Tilman D, Knoops JMH (1998) Herbivore effects on plant and nitrogen dynamics in oak savanna. Ecology 79: 165 - 177

    Article  Google Scholar 

  • Ruel J, Whitham TG (2002) Fast growing juvenile pinions suffer greater herbivory when mature. Ecology 83: 2691 - 2699

    Article  Google Scholar 

  • Ruess RW (1998) The interaction of defoliation and nutrient uptake in Sporobolus kentrophyllus, a short-grass species from the Serengeti plains. Oecologia 77: 550 - 556

    Article  Google Scholar 

  • Ruess RW, Hendrick RL, Bryant JP (1998) Regulation of fine root dynamics by mammalian browsers in early successional Alaskan taiga forests. Ecology 79: 2706 - 2720

    Article  Google Scholar 

  • Rusek J (1998) Biodiversity of Collembola and their functional role in the ecosystem. Biodiv Conserv 7: 1207 - 1219

    Article  Google Scholar 

  • Scheu S, Falca M (2000) The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro-and a mesofauna dominated community. Oecologia 123: 285 - 296

    Article  Google Scholar 

  • Scheu S, Theenhaus A, Jones TH (1999) Links between the detritivore and herbivore system: effects of earthworm and Collembola on plant growth and aphid development. Oecologia 119: 541 - 551

    Article  Google Scholar 

  • Scholes RJ, Walker BH (1993) An African savanna: synthesis of the Nylsvley study. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Schowalter TD (1981) Insect herbivore relationship to the state of the host-plant: biotic regulation of ecosystem nutrient cycling through ecological succession. Oikos 37: 126 - 130

    Article  Google Scholar 

  • Schowalter TD, Hargrove WW, Crossley DA (1986) Herbivory in forested ecosystems. Annu Rev Entomol 31: 177 - 196

    Article  Google Scholar 

  • Scott JA, French NR, Leetham JW (1979) Patterns in consumption in grasslands. In: French NR (ed) Perspectives in grassland ecology. Springer, Berlin Heidelberg New York, pp 89 - 105

    Chapter  Google Scholar 

  • Seastedt TR, Crossley DA (1980) Effects of microarthropods on the seasonal dynamics of nutrients in forest litter. Soil Biol Biochem 12: 337 - 342

    Article  CAS  Google Scholar 

  • Seastedt TR, Crossley DA (1984) The influence of arthropods on ecosystems. Bioscience 34: 157 - 161

    Article  Google Scholar 

  • Seastedt TR, Ramundo RA, Hayes DC (1988) Maximisation of densities of soil animals by foliage herbivory–empirical evidence, graphical and conceptual models. Oikos 51: 243 - 248

    Article  Google Scholar 

  • Shorthouse JD, Rofritsch O (1992) Biology of insect-induced galls. Oxford University Press, New York

    Google Scholar 

  • Simberloff D, Stiling P (1989) Leaf abscission: induced defence against pests or response to damage? Oikos 55: 43 - 49

    Article  Google Scholar 

  • Smith VR, Steenkamp M (1990) Climate change and its ecological implications at a sub Antarctic island. Oecologia 85: 14 - 24

    Article  Google Scholar 

  • Speight MR, Hunter MD, Watt AD (1999) Ecology of insects. concepts and applications. Blackwell, Oxford

    Google Scholar 

  • Stalter R, Serrao J (1983) The impact of defoliation by gypsy moths on the oak forest at Greenbrook Sanctuary, New Jersey. Bull Torrey Bot Club 110: 526-529

    Google Scholar 

  • Sullivan JJ (2003) Density-dependent shoot-borer herbivory increases the age of first reproduction and mortality of Neotropical tree seedlings. Oecologia 136: 96 - 106

    Article  PubMed  Google Scholar 

  • Swank WT, Waide JB, Crossley DA, Todd RL (198 1) Insect defoliation enhances nitrate export from forest ecosystems. Oecologia 51: 297 - 299

    Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Studies in ecology volume 5. Blackwell, Oxford

    Google Scholar 

  • Teixeira MLF, Coutinho HLC, Franco AA (1996) Effects of Cerotoma arcuata (Coleoptera Cyrosmelidae) on predation of nodules and on N2 fixation of Phaseolus vulgaris. J Econ Entomol 89: 165 - 169

    Article  Google Scholar 

  • Thimm T, Larink O (1995) Grazing preferences of some Collembola for ectomycorrhizal fungi. Biol Fertil Soils 19: 266 - 268

    Article  Google Scholar 

  • Van der Putten WH, Vet LEM, Harvey JA, Wackers FL (2001) Linking above-and below-ground multitrophic interactions of plants, herbivores, pathogens and their antagonists. TREE 16: 547 - 554

    Google Scholar 

  • Verhoef HA, de Goede RGM (1985) Effects of collembolan grazing on nitrogen dynamics in a coniferous forest. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in the soil: plants, microbes and animals. Blackwell, Oxford, pp 367– 376

    Google Scholar 

  • Wardle DA (2002) Communities and ecosystems. linking the aboveground and below-ground components. Monographs in population biology 34. Princeton University Press, Princeton

    Google Scholar 

  • Wardle DA, Barker GM, Bonner KI, Nicholson KS (1998) Can comparative approaches based on ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems? J Ecol 86: 405 - 420

    Article  Google Scholar 

  • Wardle DA, Bonner KI, Barker GM (2002) Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Funct Ecol 16: 585 - 595

    Article  Google Scholar 

  • Warnock AJ, Fitter AH, Usher MB (1982) The influence of a springtail Folsomia candida (Insecta, Collembola) on a mycorrhizal association of leek Allium porrum and the vesicular-arbuscular mycorrhizal endophyte Glomus fasciculatus. New Phytol 90: 285 - 292

    Article  Google Scholar 

  • Waterhouse DF (1977) The biological control of dung. In: Eisner T, Wilson EO (eds) The insects. Scientific American, WH Freeman, San Francisco, pp 314 - 322

    Google Scholar 

  • Webb JR, Cosby BJ, Deviney FA, Eshleman KN, Galloway JN (1995) Change in the acid-base status of an Appalachian catchment following forest defoliation by the gypsy moth. Water Air Soil Pollut 85: 535 - 540

    Article  CAS  Google Scholar 

  • Whitford WG, Stinnett K, Andersen J (1988) Decomposition of roots in a Chihuahuan Desert ecosystem. Oecologia 75: 8 - 11

    Article  Google Scholar 

  • Wickman BE, Starr MR (1990) Mammoth Lakes revisited–50 years after a Douglas-fir tussock moth outbreak. US Dep Agric Pac N W Res Note 498

    Google Scholar 

  • Wood TG, Sands WA (1978) The role of termites in ecosystems. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, pp 212 - 243

    Google Scholar 

  • Wurst S, Jones TH (2003) Indirect effects of earthworms (Aporrectodea caliginosa) on an above-ground tritrophic interaction. Pedobiologia 47: 91 - 97

    Article  Google Scholar 

  • Yeates GW, Shepherd TG, Francis GS (1998) Contrasting response to cropping of populations of earthworms and predacious nematodes in four soils. Soil Till Res 48: 255 - 264

    Article  Google Scholar 

  • Yoshimura T, Azumi JI, Tsunoda K, Takahashi M (1993) Changes of wood-attacking activity of the lower termite, Coptotermes formosanus Shiraki in defaunation–refaunation process of the intestinal Protozoa. Mater Organ 28: 153 - 164

    Google Scholar 

  • Zakaria S (1989) The influence of previous insect feeding on the rate of damage of birch tree leaves. PhD Thesis, University of London

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hartley, S.E., Jones, T.H. (2008). Insect Herbivores, Nutrient Cycling and Plant Productivity. In: Weisser, W.W., Siemann, E. (eds) Insects and Ecosystem Function. Ecological Studies, vol 173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74004-9_2

Download citation

Publish with us

Policies and ethics