Skip to main content

Abstract

The paper presents the scenario of the Biomedical technologies in the frame of the Advanced Human-Machine Interface (HMI), with specific application to the direct Brain-Computer communication. This approach relies on the development of new miniaturized system for the unobtrusive measurement of biological signal using wearable or embedded sensors integrated in Advanced HMI to be used in performing a task. In the BCI application the actual goal is enabling the communication for severely disabled people with a future perspective to increase the possibilities offered by this technology and in rehabilitation and health care. This should be possible thanks to its integration in a more complex system of ambient intelligence allowing the control of primary functions at home or through the differentiation of specific system platform supporting other services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Riva, G., Loreti, P., Lunghi, M., Vatalaro, F., Davide, F. (eds): Presence 2010: The Emergence of Ambient Intelligence. IOS PRESS, Amsterdam (2003)

    Google Scholar 

  2. Greene, J.O.: Message production. Advances in Communication Theory. Erlbaum, Mahwah N.J. (1997)

    Google Scholar 

  3. Andreoni, G., Anisetti, M., Apolloni, B., Bellandi, V., Balzarotti, S., Beverina, F., Campadelli, P., Ciceri, M.R., Colombo, P., Fumagalli, F., Palmas, G., Piccini, L.: Emotional interfaces with ambient intelligence (in press on: Athanasios Vasilakos and Witold Pedrycz (eds), Ambient Intelligence, Wireless Networking, and Ubiquitous Computing, 2006)

    Google Scholar 

  4. Picard, R., Vyzas, E., Healey, J., Toward machine emotional intelligence: analy-sis of affective physiological state, IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 10, (2001) 1175-1191

    Article  Google Scholar 

  5. Murphy, R, et al., Emotion-based control of cooperating heterogeneous robots, IEEE Transactions on Robotics and Automation, vol. 18, no. 5, (2002) 744-757

    Article  Google Scholar 

  6. Nasoz F., Alvarez K., Lisetti C.L., Emotion recognition from physiological sig- nals for presence technologies, International Journal of Cognition, Technology, and Work - Special Issue on Presence, vol. 6, no. 1, 2003

    Google Scholar 

  7. Coutaz, J., and Nigay, L., A design space for multimodal systems concurrent processing and data fusion, in INTERCHI’93 Human Factors in Computing Systems, 1993, pp. 172§-178

    Google Scholar 

  8. Gaver W., Synthesising auditory icons, in INTERCHI’93 Human Factors in Computing Systems, 1993, pp. 228§-235

    Google Scholar 

  9. Wolpaw, J. R., Birbaumer, N., McFarland, D.J., Pfurtsheller, G., Vaughan, T.M., Brain Computer Interfaces for communincation and control, Clinical Neurophys-iology, 113:767-791, 2002

    Article  Google Scholar 

  10. Beverina, F., Silvoni, S., Palmas, G., Piccione, F., Giorni, F., Tonin, P., Andreoni G., P300-based BCI: a real-time working environment to test HCI on healthy and tetraplegic subjects. Biomedizinische Technik, Band 49, Ergänzungsband 1, 2004 pp. 35-36

    Google Scholar 

  11. Kennedy P., Bakay R., Restoration of neural output from a paralyzed patient by a direct brain connection. NeuroReport, Vol. 9: (1998); 1707-1711

    Article  Google Scholar 

  12. Kennedy P., Bakay R., Moore M., Adams K., Goldwaithe J., Direct control of a computer from the human central nervous system. IEEE Trans Rehabil Eng 2000;8:198-202

    Article  Google Scholar 

  13. Wolpaw J., McFarland D., Neat G., Forneris C., An EEG-based brain- computer interface for cursor control. Electroenceph clin Neurophysiol 1991;78:252-259

    Article  Google Scholar 

  14. Pfurtscheller G., Lopes da Silva F., Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 1999;110:1842-1857

    Article  Google Scholar 

  15. Pfurtscheller G., Neuper C., Schloegl A., Lugger K., Separability of EEG sig-nals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Trans Rehabil Eng 1998;6:316-325

    Article  Google Scholar 

  16. Pfurtscheller G., Neuper C., Motor imagery and direct brain-computer commu- nication. Proc IEEE 2001;89:1123-1134

    Article  Google Scholar 

  17. Sutter E., The brain response interface: communication through visually induced electrical brain responses. J Microcomput Appl 1992;15:31-45

    Article  Google Scholar 

  18. Andreoni G., Beverina F.D.B., Palmas G., Silvoni S., Ventura G., Piccione F., BCI based on SSVEP: methodological basis. Biomedizinische Technik, Band 49, Ergänzungsband 1, 2004 pp. 33-34

    Google Scholar 

  19. Maggi L., Piccini L., Parini S., Beverina F.D.B., Silvoni S., Andreoni G., A portable electroencephalogram acquisition system dedicated to the Brain Com-puter Interface. Biomedizinische Technik, Band 49, Ergänzungsband 1, 2004 pp. 69-70

    Google Scholar 

  20. Guger, C., Edlinger, G., Krausz, G., Laundl, F., Niedermayer, I., Architectures of a PC and Pocket PC based BCI system, Proceedgins of the 2nd International Brain-Computer Interface Workshop and Training Course, pp. 49-50, September 2004

    Google Scholar 

  21. Jobsis F.F., VanderVliet,“Discovery of the near-infrared window into the body and the early development of near-infrared spectroscopy”, JBiomedOpt. 4: 392-396 (1999)

    Google Scholar 

  22. Villringer A., et al., “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults”, NeurosciLett 154:101-104 (1993)

    Google Scholar 

  23. Hoshi Y., et al., “Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model”, JApplPhysiol 90:1657-1662 (2001)

    Google Scholar 

  24. Boas D.A., et al., “The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics”, Neuroimage 13:76-90 (2001)

    Article  Google Scholar 

  25. Rostrup E., et al., “Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans”, BrainRes 954:183-193 (2002)

    Google Scholar 

  26. Jasdzewski G., et al., “Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy”, Neu-roimage 20:479-488 (2003)

    Google Scholar 

  27. Gratton E., et al., “Measurements of scattering and absorption changes in mus-cle and brain”, PhilTransRSocLondonBiolSci 352:727-735 (1997)

    Google Scholar 

  28. Chance B., et al., “Comparison of time-resolved and -unresolved measurements of deoxyhemoglobin in brain”, ProcNatlAcadSciUSA 85:4971-4975 (1988)

    Google Scholar 

  29. Delpy D.T., et al., “Estimation of optical pathlength through tissue from direct time of flight measurement”, PhysMedBiol 33:1433-1442 (1988)

    Google Scholar 

  30. Torricelli A., et al., “Mapping of calf muscle oxygenation and haemoglobin con-tent during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy”, PhysMedBiol 49:685-699 (2004)

    Google Scholar 

  31. Quaresima V., et al., “Bilateral prefrontal cortex oxygenation responses to a ver-bal fluency task: a multi-channel time-resolved near-infrared topography study”, JBiomedOpt 10:011012 (2005)

    Google Scholar 

  32. Coyle S., et al., “On the suitability of near infrared (NIR) systems for next generation brain computer interfaces”, PhysiolMeas 25:815-822 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andreoni, G., Parini, S., Maggi, L., Piccini, L., Panfili, G., Torricelli, A. (2007). Human Machine Interface for Healthcare and Rehabilitation. In: Vaidya, S., Jain, L.C., Yoshida, H. (eds) Advanced Computational Intelligence Paradigms in Healthcare-2. Studies in Computational Intelligence, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72375-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72375-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72374-5

  • Online ISBN: 978-3-540-72375-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics