Skip to main content

Ryegrasses

  • Chapter
Transgenic Crops VI

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 61))

  • 1217 Accesses

Abstract

Pasture occupies more land area than any other crop and is of tremendous value as livestock feed. Ryegrasses are among the most important forage plants in the world. The demand for high-quality pasture grasses continues to grow. Elite grasses need to demonstrate high yield and forage quality as well as tolerance to biotic and abiotic stress. Functional genomics greatly increases our understanding of mechanisms that determine the genetic, molecular and biochemical bases for economically important traits in forage plants. This requires a multi-disciplinary approach that exploits advances in molecular genetics, functional genomics and computational biology, as well as close collaboration with plant breeders. This review focuses on different aspects of ryegrass biotechnology including in vitro plant regeneration, genetic transformation and knowledge of the molecular basis for quality traits in ryegrass and ryegrass endophytes that will enable the development of plants with enhanced forage quality, yield and stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ABARE (2004) Australian commodity statistics 2004. ABARE, Canberra

    Google Scholar 

  • A’Brook J, Heard AJ (1975) The effect of ryegrass mosaic virus on the yield of perennial ryegrass awards. Ann Appl Biol 80:163–168

    Article  Google Scholar 

  • Altpeter F, Xu JP, Ahmed S (2000) Generation of large numbers of independently transformed fertile perennial ryegrass (Lolium perenne L.) plants of forage- and turf-type cultivars. Mol Breed 6:519–528

    Article  CAS  Google Scholar 

  • Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ (2000) Molecular and genetic analysis of the Silky1 gene reveals conservation in floral organ specification between eudicots and monocots. Mol Cell 5:569–579

    Article  PubMed  CAS  Google Scholar 

  • Amiard V, Morvan-Bertrand A, Billard JP, Huault C, Keller F, Prud’homme MP (2003) Fructans, but not the sucrosyl-galactosides, raffinose and loliose, are affected by drought stress in perennial ryegrass. Plant Physiol 132:2218–2229

    Article  PubMed  CAS  Google Scholar 

  • Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61:221–294

    Article  PubMed  CAS  Google Scholar 

  • Baucher M, Monties B, Van Montagu M, Boerjan W (1998) Biosynthesis and genetic engineering of lignin. Crit Rev Plant Sci 17:125–197

    Article  CAS  Google Scholar 

  • Beddows AR (1953) The ryegrasses in British agriculture: a survey. Welsh Plant Breeding Station, Aberystwyth. Wales Bull 17H:1–81

    Google Scholar 

  • Bettany AJE, Dalton SJ, Timms E, Manderyck B, Dhanoa MS, Morris P (2003) Agrobacterium tumefaciens-mediated transformation of Festuca arundinacea (Schreb.) and Lolium multiflorum (Lam.). Plant Cell Rep 21:437–444

    PubMed  CAS  Google Scholar 

  • Bhalla P, Swoboda I, Singh MB (1999) Antisense-mediated silencing of a gene encoding a major ryegrass pollen allergen. Proc Natl Acad Sci USA 96:11676–11680

    Article  PubMed  CAS  Google Scholar 

  • Blankenship JD, Houseknecht JB, Pal S, Bush LP, Grossman RB, Schardl CL (2005) Biosynthetic precursors of fungal pyrrolizidines, the loline alkaloids. Chem Biol Chem 6:1016–1022

    CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  PubMed  CAS  Google Scholar 

  • Bradley D, Qu R (2001) Effects of cultivar, explant treatment, and medium supplements on callus induction and plantlet regeneration in perennial ryegrass. Intl Turfgrass Soc Res J 9:152–156

    Google Scholar 

  • Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E (1996) Control of inflorescence architecture in Antirrhinum. Nature 376:791–797

    Article  Google Scholar 

  • Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83

    Article  PubMed  CAS  Google Scholar 

  • Breen JP (1993) Enhanced resistance to three species of aphids (Homoptera: Aphididae) in Acremonium endophyte-infected turfgrasses. J Econ Entomol 86:1279–1286

    Google Scholar 

  • Bush LP, Wilkinson HH, Schardl CL (1997) Bioprotective alkaloids of grass–fungal endophyte symbioses. Plant Physiol 114:1–7

    PubMed  CAS  Google Scholar 

  • Cairns AJ (2003) Fructan biosynthesis in transgenic plants. J Exp Bot 54:549–567

    Article  PubMed  CAS  Google Scholar 

  • Casler MD, Buxton DR, Vogel KP (2002) Genetic modification of lignin concentration affects fitness of perennial herbaceous plants. Theor Appl Genet 104:127–131

    Article  PubMed  CAS  Google Scholar 

  • Chalmers J, Johnson X, Lidgett A, Spangenberg G (2003) Isolation and characterisation of a sucrose:sucrose 1-fructosyltransferase gene from perennial ryegrass (Lolium perenne). J Plant Physiol 160:1385–1391

    Article  PubMed  CAS  Google Scholar 

  • Chalmers J, Lidgett A, Cummings N, Cao YY, Forster J, Spangenberg G (2005a) Molecular genetics of fructan metabolism in perennial ryegrass. Plant Biotechnol J 3:459–474

    Article  PubMed  CAS  Google Scholar 

  • Chalmers J, Lidgett A, Johnson X, Terdich K, Cummings N, Cao YY, Fulgueras K, Emmerling M, Sawbridge T, Ong EK, Mouradov A, Spangenberg GC (2005b) Gene discovery and molecular dissection of fructan metabolism in perennial ryegrass (Lolium perenne). In: Humphreys MO (ed) Molecular breeding for the genetic improvement of forage and turf. Wageningen Academic, Wageningen, p. 179

    Google Scholar 

  • Chen L, Auh CK, Dowling P, Bell J, Chen F, Hopkins A, Dixon RA, Wang ZY (2003) Improved forage digestibility of tall fescue (Festuca arundinacea) by transgenic down-regulation of cinnamyl alcohol dehydrogenase. Plant Biotechnol J 1:437–449

    Article  PubMed  CAS  Google Scholar 

  • Cherney JH, Casler MD, Cherney DJR (1996) Sampling forage maize for quality. Can J Plant Sci 76:93–99

    Google Scholar 

  • Christensen MJ, Leuchtmann A, Rowan DD, Tapper BA (1993) Taxonomy of Acremonium endophytes of tall fescue (Festuca arundinacea), meadow fescue (F. pratensis) and perennial ryegrass (Lolium perenne). Mycol Res 97:1083–1092

    Google Scholar 

  • Cogan N, Smith K, Yamada T, Francki M, Vecchies A, Jones E, Spangenberg G, Forster J (2005) QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110:364–380

    Article  PubMed  CAS  Google Scholar 

  • Colasanti J, Yuan Z, Sundaresan V (1998) The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 93:593–603

    Article  PubMed  CAS  Google Scholar 

  • Cunningham PJ, Blumenthal MJ, Anderson MW, Prakash KS, Leonforte A (1994) Perennial ryegrass improvement in Australia. NZ J Agric Res 37:295–310

    Google Scholar 

  • Dale PJ (1980) Embryoids from cultured immature embryos of Lolium multiflorum. Z Pflanzenphysiol 100:73–77

    Google Scholar 

  • Dale PJ, Dalton SJ (1983) Immature inflorescence culture in Lolium, Festuca, Phleum and Dactylis. Z Pflanzenphysiol 111:39–45

    Google Scholar 

  • Dale PJ, Thomas E, Brettell RIS, Wernicke W (1981) Embryogenesis from cultured immature inflorescences and nodes of Lolium multiflorum. Plant Cell Tissue Organ Cult 1:47–55

    Article  Google Scholar 

  • Dalton SJ (1988) Plant regeneration from cell suspension protoplasts of Festuca arundinacea Schreb. (tall fescue) and Lolium perenne L. (perennial ryegrass). J Plant Physiol 132:170–175

    Google Scholar 

  • Dalton SJ, Bettany AJE, Timms E, Morris P (1998) Transgenic plants of Lolium multiflorum and Lolium perenne, Festuca arundinacea, and Agrostis palustris stolonifera by silicon carbide fibre-mediated transformation of cell suspension cultures. Plant Sci 132:31–43

    Article  CAS  Google Scholar 

  • Dalton SJ, Bettany AJE, Timms E, Morris P (1999) Co-transformed, diploid Lolium perenne (perennial ryegrass), Lolium multiflorum (Italian ryegrass) and Lolium temulentum (darnel) plants produced by microprojectile bombardment. Plant Cell Rep 18:721–726

    Article  CAS  Google Scholar 

  • Demel RA, Dorrepaal E, Ebskamp MJM, Smeekens JCM, Kruijff B de (1998) Fructans interact strongly with model membranes. Biochim Biophys Acta 1375:36–42

    Article  PubMed  CAS  Google Scholar 

  • Dexter ST, Tottingham WE, Graber LF (1932) Investigations of the hardiness of plants by measurement of electrical conductivity. Plant Physiol 7:63–78

    PubMed  CAS  Google Scholar 

  • Dixon RA, Reddy MSS (2003) Biosynthesis of monolignols. Genomic and reverse genetic approaches. Phytochem Rev 2:289–306

    Article  CAS  Google Scholar 

  • Dixon RA, Lamb CJ, Masoud S, Sewalt VJ, Paiva NL (1996) Metabolic engineering: prospects for crop improvement through the genetic manipulation of phenylpropanoid biosynthesis and defence responses: a review. Gene 179:61–71

    Article  PubMed  CAS  Google Scholar 

  • Dumsday JL, Smith KF, Forster JW, Jones ES (2003) SSR-based genetic linkage analysis of resistance to crown rust (Puccinia coronata f. sp. lolii) in perennial ryegrass (Lolium perenne). Plant Pathol 52:628–637

    Article  Google Scholar 

  • Eagling DR, Villalta O, Sward RJ (1992) Host range symptoms and effects on pasture production of a Victorian isolate of ryegrass mosaic potyvirus. Aust J Agric Res 43:1243–1251

    Article  Google Scholar 

  • Easton HS (1989) Variability of leaf shear strength in perennial ryegrass. NZ J Agric Res 32:1–6

    Google Scholar 

  • Elbersen HW, West CP (1996) Growth and water relations of field-grown tall fescue as influenced by drought and endophyte. Grass Forage Sci 51:333–342

    Article  Google Scholar 

  • Elmi AA, West CP, Robbins RT, Kirkpatrick TL (2000) Endophyte effects on reproduction of a root-knot nematode (Meloidogyne marylandi) and osmotic adjustment in tall fescue. Grass Forage Sci 55:166–172

    Article  Google Scholar 

  • Faville MJ, Vecchies AC, Schreiber M, Drayton MC, Hughes LJ, Jones ES, Guthridge KM, Smith KF, Sawbridge T, Spangenberg GC, Bryan GT, Forster JW (2004) Functionally associated molecular genetic marker map construction in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110:12–32

    Article  PubMed  CAS  Google Scholar 

  • Felitti SA, Shields K, Ramsperger M, Tian P, Webster T, Ong EK, Sawbridge T, Spangenberg G (2004) Gene discovery and microarray-based transcriptome analysis in grass endophytes. In: Hopkins A, Wang ZY, Mian R, Sledge M, Barker RE (eds) Molecular breeding of forage and turf. Kluwer Academic, Dordrecht, pp 45–153

    Google Scholar 

  • Felitti SA, Tian P, Edwards D, Spangenberg G (2005) A high-throughput gene silencing approach for studying the interaction between perennial ryegrass (Lolium perenne) and the fungal endophyte Neotyphodium lolii. In: Humphreys MO (ed) Molecular breeding for the genetic improvement of forage and turf. Wageningen Academic, Wageningen, p. 215

    Google Scholar 

  • Forster JW, Spangenberg G (1999) Forage and turf grass biotechnology: principles, methods and prospects. In: Setlow JK (ed) Genetic engineering: principles and methods, vol 21. Kluwer Academic/Plenum, Dordrecht, pp 191–237

    Google Scholar 

  • Forster JW, Jones ES, Kölliker R, Drayton MC, Dupal MP, Guthridge KM, Smith KF (2001) DNA profiling in outbreeding forage species. In: Henry R (ed) Plant genotyping – the DNA fingerprinting of plants. CAB International, Wallington, pp 299–320

    Google Scholar 

  • Forster JW, Jones ES, Batley J, Smith KF (2004) Molecular marker-based genetic analysis of pasture and turf grasses. In: Hopkins A, Wang ZY, Mian R, Sledge M, Barker RE (eds) Molecular breeding of forage and turf. Kluwer Academic, Dordrecht, pp 197–239

    Chapter  Google Scholar 

  • Forster JW, Jones ES, Smith KF, Guthridge KM, Dupal MP, Howlett S, Hughes LJ, Garvie S, Preston C (2005) Molecular marker technology for the study of genetic variation and comparative genetics in pasture grasses. In: Sharma AK, Sharma A (eds) Phanerograms. (Plant genome: biodiversity and evolution, vol 1 part B) Science, Hereford, pp 119–155

    Google Scholar 

  • Fukuda A, Nakamura A, Tanaka Y (1999) Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochim Biophys Acta 1446:149–155

    PubMed  CAS  Google Scholar 

  • Gallagher JA, Cairns AJ, Pollock CJ (2004) Cloning and characterization of a putative fructosyltransferase and two putative invertase genes from the temperate grass Lolium temulentum L. J Exp Bot 55:557–569

    Article  PubMed  CAS  Google Scholar 

  • Gallagher RT, Hawkes AD, Stey PS, Vleggaar R (1984) Tremorgenic neurotoxins from perennial ryegrass causing ryegrass staggers disorder of livestock: structure elucidation of lolitrem B. J Chem Soc Chem Commun 9:614–616

    Article  Google Scholar 

  • Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988

    Article  PubMed  CAS  Google Scholar 

  • Gavnholt B, Larsen K, Rasmussen SK (2002) Isolation and characterisation of laccase cDNAs from meristematic and stem tissues of ryegrass (Lolium perenne). Plant Sci 162:873–885

    Article  CAS  Google Scholar 

  • Glenn AE, Bacon CW, Price R, Hanlin RT (1996) Molecular phylogeny of Acremonium and its taxonomic implications. Mycologia 88:369–383

    Article  CAS  Google Scholar 

  • Gocal GFW, King RW, Blundell CA, Schwartz OM, Andersen CH, Weigel D (2001) Evolution of floral meristem identity genes. Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Physiol 125:1788–1801

    Article  PubMed  CAS  Google Scholar 

  • Gressel J, Zilberstein A (2003) Let them eat (GM) straw. Trends Biotechnol 21:525–530

    Article  PubMed  CAS  Google Scholar 

  • Ha SB (2000) Transgenic tall fescue (Festuca arundinacea). In: Bajaj YPS (ed) Transgenic crops I. (Biotechnology in agriculture and forestry, vol 46) Springer, Berlin Heidelberg New York, pp 164–171

    Google Scholar 

  • Halpin C, Holt K, Chojecki J, Oliver D, Chabbert B, Monties B, Edwards K, Barakate A, Foxon GA (1998) Brown-midrib maize (bm1) – a mutation affecting the cinnamyl alcohol dehydrogenase gene. Plant J 14:545–553

    Article  PubMed  CAS  Google Scholar 

  • Hannaway D, Fransen S, Cropper J, Teel M, Chaney M, Griggs T, Hales R, Hart J, Cheeke P, Hansen D, Klinger R, Lane W (1999) Perennial ryegrass (Lolium perenne L.). Pacific Northwest Extension/Oregon State University, available at: eesc.orst.edu/agcomwebfile/edmat/html/pnw/pnw503/pnw503.html

    Google Scholar 

  • Hayward MD, McAdam NJ (1977) Isozyme as a measure of distinctiveness and stability in cultivars of Lolium perenne. Z Pflanzen 79:59–68

    Google Scholar 

  • Heath R, Huxley H, Stone B, Spangenberg G (1998) cDNA cloning and differential expression of three caffeic acid O-methyltransferase homologues from perennial ryegrass (Lolium perenne). J Plant Physiol 153:649–657

    CAS  Google Scholar 

  • Heath R, McInnes R, Lidgett A, Huxley H, Lynch D, Jones E, Mahoney N, Spangenberg G (2002) Isolation and characterisation of three 4-coumarate:CoA ligase homologue cDNAs from perennial ryegrass (Lolium perenne). J Plant Physiol 159:773–779

    Article  CAS  Google Scholar 

  • Hellwege EM, Gritscher D, Willmitzer L, Heyer AG (1997) Transgenic potato tubers accumulate high levels of 1-kestose and nystose: functional identification of a sucrose:sucrose 1-fructosyltransferase of artichoke (Cynara scolymus) blossom discs. Plant J 12:1057–1065

    Article  PubMed  CAS  Google Scholar 

  • Hill NS, Stringer WC, Rottinghaus GE, Belesky DP, Parrott WA, Pope DD (1990) Growth, morphological, and chemical component responses of tall fescue to Acremonium coenophialum. Crop Sci 30:156–161

    Article  Google Scholar 

  • Hincha DK, Hellwege EM, Heyer AG, Crowe JH (2000) Plant fructans stabilize phosphatidylcholine liposomes during freeze-drying. Eur J Biochem 267:535–540

    Article  PubMed  CAS  Google Scholar 

  • Hincha DK, Zuther E, Hellwege EM, Heyer AG (2002) Specific effects of fructo- and gluco-oligosaccharides in the preservation of liposomes during drying. Glycobiology 12:103–110

    Article  PubMed  CAS  Google Scholar 

  • Hisano H, Kanazawa K, Yoshida M, Kitamura K, Yamada T (2004a) Lolium perenne mRNA for fructan:fructan 1-fructosyltransferase. EMBL Database AB186920

    Google Scholar 

  • Hisano H, Kanazawa K, Yoshida M, Kitamura K, Yamada T (2004b) Lolium perenne mRNA for fructan:fructan 6G-fructosyltransferase. EMBL Database AB125218

    Google Scholar 

  • Hisano H, Kanazawa A, Kawakami A, Yoshida M, Shimamoto Y, Yamada J (2004c) Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing. Plant Sci 167:861–868

    Article  CAS  Google Scholar 

  • Humphreys JM, Chapple C (2002) Rewriting the lignin roadmap. Curr Opin Plant Biol 5:224–229

    Article  PubMed  CAS  Google Scholar 

  • Hunt WF, Easton HS (1989) Fifty years of ryegrass research in New Zealand. Proc NZ Grassland Assoc 50:11–23

    Google Scholar 

  • Hutchinson J, Rees H, Seal AG (1979) An assay of the activity of supplementary DNA in Lolium. Heredity 43:411–421

    CAS  Google Scholar 

  • Inoue M, Gao ZS, Hirata M, Fujimori M, Cai HW (2004) Construction of a high-density linkage map of Italian ryegrass (Lolium multiflorum Lam.) using restriction fragment length polymorphism, amplified fragment length polymorphism, and telomeric repeat associated sequence markers. Genome 47:57–65

    Article  PubMed  CAS  Google Scholar 

  • Jensen LB, Andersen JR, Frei U, Xing YZ, Taylor C, Holm PB, Lubberstedt TL (2005) QTL mapping of vernalization response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1. Theor Appl Genet 110:527–536

    Article  PubMed  CAS  Google Scholar 

  • Jensen S, Salchert K, Nielsen K (2001) A TERMINAL FLOWER1-like gene from perennial ryegrass involved in floral transition and axillary meristem identity. Plant Physiol 125:1517–1528

    Article  PubMed  CAS  Google Scholar 

  • Jeon JS, Jang S, Lee S, Nam J, Kim C, Lee SH, Chung YY, Kim SR, Lee YH, Cho YG (2000) Leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 12:871–884

    Article  PubMed  CAS  Google Scholar 

  • Johnson P, Marsh DG (1965) Allergens from common ryegrass pollen (Lolium perenne). The allergenic determinants and carbohydrate moiety. Immunochemistry 3:101–110

    Article  Google Scholar 

  • Johnson X, Lidgett A, Chalmers J, Guthridge K, Jones E, Cummings N, Spangenberg G (2003) Isolation and characterisation of an invertase cDNA from perennial ryegrass (Lolium perenne). J Plant Physiol 160:903–911

    Article  PubMed  CAS  Google Scholar 

  • Jones ES, Mahoney NL, Hayward MD, Armstead IP, Jones JG, Humphreys MO, King IP, Kishida T, Yamada T, Balfourier F, Charmet G, Forster JW (2002a) An enhanced molecular marker based genetic map of perennial ryegrass (Lolium perenne) reveals comparative relationships with other Poaceae genomes. Genome 45:282–295

    Article  PubMed  CAS  Google Scholar 

  • Jones ES, Dupal MP, Dumsday JL, Hughes LJ, Forster JW (2002b) An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 105:577–584

    Article  PubMed  CAS  Google Scholar 

  • Jung GA, Van Wijk AJP, Hunt WF, Watson CE (1996) Ryegrasses. In: Moser LE, Buxton DR, Casler MD (eds) Cool-season forage grasses. (American Society of Agronomy Monograph 34) American Society of Agronomy, Madison, pp 605–641

    Google Scholar 

  • King TP, Hoffman D, Lowenstein H, Marsh DG, Platt-Mills TA, Thomas W (1995) Allergen nomenclature. J Allergy Clin Immunol 96:5–14

    Article  CAS  Google Scholar 

  • Larsen K (2004) Cloning and characterization of a ryegrass (Lolium perenne) cDNA encoding cinnamoyl-CoA reductase (CCR). Plant Sci 166:569–581

    Article  CAS  Google Scholar 

  • Lee SH, Woo HS, Lee BH (2004) Factors affecting genetic transformation of Italian ryegrass. J Anim Sci Technol 46:235–242

    Article  Google Scholar 

  • Lewis DH (1984) Occurrence and distribution of storage carbohydrates in vascular plants. In: Lewis DH (ed) Storage carbohydrates in vascular plants. Cambridge University Press, Cambridge, pp 1–52

    Google Scholar 

  • Li Q, Robson PRH, Bettany AJE, Donnison IS, Thomas H, Scott IM (2004) Modification of senescence in ryegrass transformed with IPT under the control of a monocot senescence-enhanced promoter. Plant Cell Rep 22:816–821

    Article  PubMed  CAS  Google Scholar 

  • Lidgett A, Jennings K, Johnson X, Guthridge K, Jones E, Spangenberg G (2002) Isolation and characterisation of a fructosyltransferase gene from perennial ryegrass (Lolium perenne). J Plant Physiol 159:1037–1043

    Article  CAS  Google Scholar 

  • Lidgett A, Emmerling M, Heath R, McInnes R, Lynch D, Bartkowski A, Fulgueras K, Sawbridge T, Ong EK, Smith KF, Mouradov A, Spangenberg GC (2005) Gene discovery and molecular dissection of lignin biosynthesis in perennial ryegrass (Lolium perenne). In: Humphreys MO (ed) Molecular breeding for the genetic improvement of forage and turf. Wageningen Academic, Wageningen, p. 180

    Google Scholar 

  • Lohmann JU, Weigel D (2002) Building beauty: the genetic control of floral patterning. Dev Cell 2:135–142

    Article  PubMed  CAS  Google Scholar 

  • Lynch D, Lidgett A, McInnes R, Huxley H, Jones E, Mahoney N, Spangenberg G (2002) Isolation and characterisation of three cinnamyl alcohol dehydrogenase homologue cDNAs from perennial ryegrass (Lolium perenne L.). J Plant Physiol 159:653–660

    Article  CAS  Google Scholar 

  • Malinowski DP, Belesky DP (1999) Neotyphodium coenophialum-endophyte infection affects the ability of tall fescue to use sparingly available phosphorus. J Plant Nutr 22:835–853

    Article  CAS  Google Scholar 

  • Martin J, Storgaard M, Andersen CH, Nielsen KK (2004) Photoperiodic regulation of flowering in perennial ryegrass involving a CONSTANS-like homolog. Plant Mol Biol 56:159–169

    Article  PubMed  CAS  Google Scholar 

  • McAlister FM, Lewis-Henderson WR, Jenkins CLD, Watson JM (2001) Isolation and expression of a cinnamyl alcohol dehydrogenase cDNA from perennial ryegrass (Lolium perenne). Aust J Plant Physiol 28:1085–1094

    CAS  Google Scholar 

  • McInnes R, Lidgett A, Lynch D, Huxley H, Jones E, Mahoney N, Spangenberg G (2002) Isolation and characterization of a cinnamoyl-CoA reductase gene from perennial ryegrass (Lolium perenne). J Plant Physiol 159:415–422

    Article  CAS  Google Scholar 

  • Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14:111–130

    Google Scholar 

  • Muller CB, Krauss J (2005) Symbiosis between grasses and asexual fungal endophytes. Curr Opin Plant Biol 8:450–456

    Article  PubMed  CAS  Google Scholar 

  • Murray FR, Latch GCM, Scott DB (1992) Surrogate transformation of perennial ryegrass, Lolium perenne, using genetically modified Acremonium endophyte. Mol Gen Genet 233:1–9

    Article  PubMed  CAS  Google Scholar 

  • Newell CA, Gray JC (2005) Regeneration from leaf-base explants of Lolium perenne L. and Lolium multiflorum L. Plant Cell Tissue Organ Cult 80:233–237

    Article  Google Scholar 

  • Olesen A, Andersen SB, Due IK (1988) Anther culture response in perennial ryegrass (Lolium perenne L.). Plant Breed 101:60–65

    Article  Google Scholar 

  • Ozaki K, Hayashi M (1996) Cryoprotective effects of cycloinulohexaose on freezing and freeze-drying of liposomes. Chem Pharm Bull 44:2116–2120

    PubMed  CAS  Google Scholar 

  • Panaccione DG, Johnson RD, Wang J, Young CA, Damrongkool P, Scott B, Schardl CL (2001) Elimination of ergovaline from a grass-Neotyphodium endophyte symbiosis by genetic modification of the endophyte. Proc Natl Acad Sci USA 98:12820–12825

    Article  PubMed  CAS  Google Scholar 

  • Pavis N, Boucaud J, Prud’homme MP (2001a) Fructans and fructan-metabolizing enzymes in leaves of Lolium perenne. New Phytol 150:97–109

    Article  CAS  Google Scholar 

  • Pavis N, Chatterton NJ, Harrison PA, Baumgartner S, Praznik W, Boucaud J, Prud’homme MP (2001b) Structure of fructans in roots and leaf tissues of Lolium perenne. New Phytol 150:83–95

    Article  CAS  Google Scholar 

  • Peterson K, Didion T, Andersen C, Nielsen K (2004) MADS-box genes from perennial ryegrass differentially expressed during transition from vegetative to reproductive growth. J Plant Physiol 161:439–447

    Article  Google Scholar 

  • Petrovska N, Wu X, Donato R, Wang ZY, Ong EK, Jones E, Forster J, Emmerling M, Sidoli A, O’Hehir R, Spangenberg G (2004) Transgenic ryegrass (Lolium ssp.) with down-regulation of main pollen allergens. Mol Breed 14:489–501

    Article  CAS  Google Scholar 

  • Petrovska N, Mouradov A, Wang ZY, Smith KF, Spangenberg G (2005) Development and field evaluation of transgenic ryegrass (Lolium spp) with down-regulation of main pollen allergens. In: Humphreys MO (ed) Molecular breeding for the genetic improvement of forage and turf. Wageningen Academic, Wageningen, p. 243

    Google Scholar 

  • Pond KR, Ellis WC, Lascano CE, Akin DE (1987) Fragmentation and flow of grazed coastal Bermuda grass through the digestive tract of cattle. J Anim Sci 65:609–618

    PubMed  CAS  Google Scholar 

  • Posselt UK, Wang G, Schubert J (1998) Induction of virus resistance by means of Agrobacterium-mediated gene transfer in ryegrass. In: Boller B, Stadelmann FJ (eds) Breeding for a multifunctional agriculture. Swiss Federal Research Station for Agriculture, Zurich, pp 54–156

    Google Scholar 

  • Prestidge RA, Gallagher RT (1988) Endophyte fungus confers resistance to ryegrass: Argentine stem weevil larval studies. Ecol Entomol 13:429–435

    Google Scholar 

  • Radojevic I, Simpson RJ, St John JA, Humphreys MO (1994) Chemical composition and in vitro digestibility of lines of Lolium perenne selected for high concentrations of water-soluble carbohydrate. Aust J Agric Res 45:901–912

    Article  Google Scholar 

  • Rowan DD, Gaynor DL (1986) Isolation of feeding deterrents against Argentine stem weevil from ryegrass infected with the endophyte Acremonium loliae. J Chem Ecol 12:647–658

    Article  CAS  Google Scholar 

  • Salehi H, Khosh-Khui M (2005) Effects of genotype and plant growth regulators on callus induction and plant regeneration in four important turfgrass genera: a comparative study. In Vitro Cell Dev Biol Plant 41:157–161

    Article  CAS  Google Scholar 

  • Sawbridge T, Ong E, Binnion C, Emmerling M, McInnes R, Meath K, Nguyen N, Nunan K, O’Neill M, O’Toole F, Rhodes C, Simmonds J, Tian P, Wearne K, Webster T, Winkworth A, Spangenberg G (2003) Generation and analysis of expressed sequence tags in perennial ryegrass (Lolium perenne L.). Plant Sci 165:1089–1100

    Article  CAS  Google Scholar 

  • Schardl CL (1996) Epichloë species: fungal symbionts of grasses. Annu Rev Phytopathol 34:109–130

    Article  PubMed  CAS  Google Scholar 

  • Schardl CL, Leuchtmann A, Chung K-R, Penny D, Siegel MR (1997) Coevolution by common descent fungal symbionts (Epichloë spp) and grass hosts. Mol Biol Evol 14:133–143

    CAS  Google Scholar 

  • Schellenbaum L, Sprenger N, Schuepp H, Wiemken A, Boller T (1999) Effects of drought, transgenic expression of fructan synthesising enzyme and of mycorrhizal symbiosis on growth and soluble carbohydrate pools in tobacco plants. New Phytol 142:67–77

    Article  CAS  Google Scholar 

  • Scott B (2001) Molecular interactions between Lolium grasses and their fungal symbionts. In: Spangenberg G (ed) Molecular breeding of forage crops. Kluwer Academic, Dordrecht, pp 261–274

    Google Scholar 

  • Scott B (2004) Functional analysis of the perennial ryegrass–Epichloë endophyte interaction. In: Hopkins A, Wang ZY, Mian R, Sledge M, Barker RE (ed) Molecular breeding of forage and turf. Kluwer Academic, Dordrecht, pp 145–153

    Google Scholar 

  • Sevenier R, Hall RD, Van der Meer IM, Hakkert HJC, Van Tunen AJ, Koops AJ (1998) High level fructan accumulation in transgenic sugar beet. Nat Biotechnol 16:843–846

    Article  PubMed  CAS  Google Scholar 

  • Siegel MR, Latch GCM, Johnson MC (1985) Acremonium fungal endophytes of tall fescue and perennial ryegrass: significance and control. Plant Dis 69:179–183

    Google Scholar 

  • Smart IJ, Tuddenham WG, Knox RB (1979) Aerobiology of grass pollen in the city atmosphere of Melbourne: effects of weather parameters and pollen sources. Aust J Bot 27:333–342

    Article  Google Scholar 

  • Smith KF, Simpson RJ, Oram RN, Lowe KF, Kelly KB, Evans PM, Humphreys MO (1998) Seasonal variation in the herbage yield and nutritive value of perennial ryegrass (Lolium perenne L.) cultivars with high or normal water-soluble carbohydrate concentrations grown in three contrasting Australian dairy environments. Aust J Exp Agric 38:821–830

    Article  Google Scholar 

  • Smith KF, Forster JW, Dobrowolski MP, Cogan NOI, Bannan NR, van Zijll de Jong E, Emmerling M, Spangenberg G (2005) Application of molecular technologies in forage plant breeding. In: Humphreys MO (ed) Molecular breeding for the genetic improvement of forage and turf. Wageningen Academic, Wageningen, pp 63–72

    Google Scholar 

  • Spangenberg G, Wang Z (2004) Biolistic transformation of fescues and ryegrasses. In: Curtis IS (ed) Transgenic crop of the world. Kluwer Academic, Dordrecht, pp 115–128

    Google Scholar 

  • Spangenberg G, Wang Z, Wu X, Nagel J, Potrykus I (1995) Transgenic perennial ryegrass (Lolium perenne) plants from microprojectile bombardment of embryogenic suspension cells. Plant Sci 108:209–217

    Article  CAS  Google Scholar 

  • Spangenberg G, Wang ZY, Potrykus I (1998) Biotechnology in forage and turf grass improvement. In: Frankel R, Grossman M, Linkens HF, Maliga P, Riley R (eds) Monographs on theoretical and applied genetics, vol 23. Springer, Berlin Heidelberg New York, pp 127–146

    Google Scholar 

  • Spangenberg G, Wang Z, Ye XD, Wu XL, Potrykus I (2000) Transgenic ryegrass (Lolium spp). In: Bajaj YPS (ed) Transgenic crops I. (Biotechnology in agriculture and forestry, vol 46) Springer, Berlin Heidelberg New York, pp 172–187

    Google Scholar 

  • Spangenberg G, Kalla R, Lidgett A, Sawbridge T, Ong EK, John U (2001) Breeding forage plants in the genome era. In: Spangenberg G (ed) Molecular breeding of forage crops. Kluwer Academic, Dordrecht, pp 219–223

    Google Scholar 

  • Spangenberg G, Forster JW, Edwards D, John U, Mouradov A, Emmerling M, Batley J, Felitti S, Cogan NOI, Smith KF, Dobrowolski MP (2005a) Future directions in the molecular breeding of forage and turf. In: Humphreys MO (ed) Molecular breeding for the genetic Improvement of forage and turf. Wageningen Academic, Wageningen, pp 83–97

    Google Scholar 

  • Spangenberg G, Sawbridge T, Ong EK, Love CG, Erwin TA, Logan EG, Edwards D (2005b) Ryegrass ASTRA: a web-based resource for Lolium EST analysis. In: Humphreys MO (ed) Molecular breeding for the genetic improvement of forage and turf. Wageningen Academic, Wageningen, p. 201

    Google Scholar 

  • Spiering MJ, Wilkinson HH, Blankenship JD, Schardl CL (2002) Expressed sequence tags and genes associated with loline alkaloid expression by the fungal endophyte Neotyphodium uncinatum. Fungal Genet Biol 36:242–254

    Article  PubMed  CAS  Google Scholar 

  • Spiering MJ, Moon CD, Wilkinson HH, Schardl CL (2005) Gene clusters for insecticidal loline alkaloids in the grass-endophytic fungus Neotyphodium uncinatum. Genetics 169:1403–1414

    Article  PubMed  CAS  Google Scholar 

  • Spollen WG, Nelson CJ (1994) Response of fructan to water deficit in growing leaves of tall fescue. Plant Physiol 106:329–336

    PubMed  CAS  Google Scholar 

  • Sprenger N, Schellenbaum L, Van Dun K, Boller T, Wiemken A (1997) Fructan synthesis in transgenic tobacco and chicory plants expressing barley sucrose: fructan 6-fructosyltransferase. FEBS Lett 400:355–358

    Article  PubMed  CAS  Google Scholar 

  • Takahashi W, Komatsu T, Fujimori M, Takamizo T (2004) Screening of regenerable genotypes of Italian ryegrass (Lolium multiflorum Lam.). Plant Prod Sci 7:55–61

    Article  Google Scholar 

  • Takahashi W, Fujimori M, Miura Y, Komatsu T, Nishizawa Y, Hibi T, Takamizo T (2005) Increased resistance to crown rust disease in transgenic Italian ryegrass (Lolium multiflorum Lam.) expressing the rice chitinase gene. Plant Cell Rep 23:811–818

    Article  PubMed  CAS  Google Scholar 

  • Tamborini E, Brandazza A, De Lalla C, Musco G, Siccardi AG, Arosio P, Sidoli A (1995) Recombinant allergen Lol p II: expression, purification and characterization. Mol Immunol 32:505–513

    Article  PubMed  CAS  Google Scholar 

  • Terrell EE (1968) A taxonomic revision of the genus Lolium. USDA-ARS Tech Bull 1392

    Google Scholar 

  • Torello WA, Symington AG (1984) Regeneration of perennial ryegrass callus tissue. HortScience 19:56–57

    CAS  Google Scholar 

  • Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003–1006

    Article  PubMed  CAS  Google Scholar 

  • Van den Ende W, De Coninck B, Van Laere A (2004) Plant fructan exohydrolases: a role in signalling and defence? Trends Plant Sci 9:523–528

    Article  PubMed  CAS  Google Scholar 

  • Van der Meer IM, Koops AJ, Hakkert JC, Van Tunen AJ (1998) Cloning of the fructan biosynthesis pathway of Jerusalem artichoke. Plant J 15:489–500

    Article  PubMed  Google Scholar 

  • Van der Valk P, Proveniers MCG, Pertijs JH, Lamers JTWH, Van Dun CMP, Smeekens JCM (2004) Late heading of perennial ryegrass caused by introducing an Arabidopsis homeobox gene. Plant Breed 123:531–535

    Article  Google Scholar 

  • Van Heeswijck R, Hutchinson J, Kaul V, McDonald G, Woodward J (1994) The role of biotechnology in perennial ryegrass improvement of temperate pastures. NZ J Agric Res 37:427–438

    Google Scholar 

  • Vereyken IJ, Chupin V, Demel RA, Smeekens SCM, De Kruijff B (2001) Fructans insert between the headgroups of phospholipids. Biochim Biophys Acta 1510:307–320

    Article  PubMed  CAS  Google Scholar 

  • Vignols F, Rigau J, Torres MA, Capellades M, Puigdomenech P (1995) The brown midrib 3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 4:407–416

    Article  Google Scholar 

  • Vijn I, Van Dijken A, Sprenger N, Van Dun K, Weisbeek P, Wiemken A, Smeekens S (1997) Fructan of the inulin neoseries is synthesised in transgenic chicory plants (Cichorium intybus L.) harbouring onion (Allium cepa L.) fructan:fructan 6G-fructosyltransferase. Plant J 11:387–398

    Article  PubMed  CAS  Google Scholar 

  • Wang GR, Binding H, Posselt UK (1997) Fertile transgenic plants from direct gene transfer to protoplasts from Lolium perenne and Lolium multiflorum Lam. J Plant Physiol 151:83–90

    CAS  Google Scholar 

  • Wang ZY, Nagel J, Potrykus I, Spangenberg G (1993) Plants from suspension cell-derived protoplasts in Lolium species. Plant Sci 94:179–193

    Article  CAS  Google Scholar 

  • Wang ZY, Scott M, Hopkins A (2002) Plant regeneration from embryogenic cell suspension cultures of Lolium temulentum. In Vitro Cell Dev Biol Plant 38:446–450

    Article  Google Scholar 

  • Wang ZY, Ge Y, Mian R, Baker J (2005) Development of highly tissue culture responsive lines of Lolium temulentum by anther culture. Plant Sci 168:203–211

    Article  CAS  Google Scholar 

  • Warnke SE, Barker RE, Jung G, Sim SC, Mian MAR, Saha MC, Brilman LA, Dupal MP, Forster JW (2004) Genetic linkage mapping of an annual x perennial ryegrass population. Theor Appl Genet 109:294–304

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson HH, Siegel MR, Blankenship JD, Mallory AC, Bush LP, Schardl CL (2000) Contribution of fungal loline alkaloids to protection from aphids in a grass–endophyte mutualism. Mol Plant Microbe Interact 13:1027–1033

    Article  PubMed  CAS  Google Scholar 

  • Wilman D, Waters RJK, Baker DH, Williams SP (1992) Comparison of two varieties of Italian ryegrass (Lolium multiflorum) for milk production when fed as silage and when grazed. J Agric Sci 118:37–46

    Google Scholar 

  • Winkel BSJ (2004) Metabolic channelling in plants. Annu Rev Plant Biol 55:85–107

    Article  PubMed  CAS  Google Scholar 

  • Wu YY, Chen QJ, Chen M, Chen J, Wang XC (2005) Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+ antiporter gene. Plant Sci 169:65–73

    Article  CAS  Google Scholar 

  • Xu JP, Schubert J, Altpeter F (2001) Dissection of RNA-mediated ryegrass mosaic virus resistance in fertile transgenic perennial ryegrass (Lolium perenne L.). Plant J 26:265–274

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Forster JW (2005) QTL analysis and trait dissection in ryegrasses (Lolium spp.). In: Humphreys MO (ed) Molecular breeding for the genetic improvement of forage and turf. Wageningen Academic, Wageningen, pp 43–53

    Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2484

    Article  PubMed  CAS  Google Scholar 

  • Yates SG, Plattner RD, Garner GB (1985) Detection of ergopeptine alkaloids in endophyte infected, toxic Ky-31 tall fescue by mass spectrometry/mass spectrometry. J Agric Food Chem 33:719–722

    Article  CAS  Google Scholar 

  • Ye X, Wang ZY, Wu X, Potrykus I, Spangenberg G (1997) Transgenic Italian ryegrass (Lolium multiflorum) plants from microprojectile bombardment of embryogenic suspension cells. Plant Cell Rep 16:379–384

    CAS  Google Scholar 

  • Ye XD, Wu XL, Zhao H, Frehner M, Nösberger J, Potrykus I, Spangenberg G (2001) Altered fructan accumulation in transgenic Lolium multiflorum plants expressing a Bacillus subtilis SacB gene. Plant Cell Rep 20:205–212

    Article  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Ryegrasses. In: Pua, EC., Davey, M. (eds) Transgenic Crops VI. Biotechnology in Agriculture and Forestry, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71711-9_21

Download citation

Publish with us

Policies and ethics