Skip to main content

Simulation Frameworks for Large-Scale Brain Systems

  • Chapter
Handbook of Brain Connectivity

Part of the book series: Understanding Complex Systems ((UCS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson JR, Albert MV, Fincham JM (2005) Tracing problem solving in real time: fMRI analysis of the subject-paced Tower of Hanoi. J Cogn Neurosci 17: 1261–1274.

    Article  Google Scholar 

  • Anderson JR, Qin Y, Sohn MH, Stenger VA, Carter CS (2003) An information-processing model of the BOLD response in symbol manipulation tasks. Psychon Bull Rev 10, 241–261

    Article  Google Scholar 

  • Arbib MA, Bischoff A, Fagg AH, Grafton ST (1995) Synthetic PET: Analyzing large-scale properties of neural networks. Human Brain Mapp.2, 225–233

    Article  Google Scholar 

  • Arbib MA (Ed.) (2003) The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge, MA.

    MATH  Google Scholar 

  • Brown JW, Braver TS (2005) Learned predictions of error like lihood in the anterior cingulate cortex. Science 307: 1118–1121.

    Article  Google Scholar 

  • Buechel C, Coull JT, Friston KJ (1999) The predictive value of changes in effective connectivity for human learning. Science 283: 1538–1541.

    Article  Google Scholar 

  • Chadderdon GL, Sporns O (2006) A large-scale neurocomputational model of task-oriented behavior selection and working memory inthe prefrontal cortex. J. Cogn. Neurosci. 18: 242–257.

    Article  Google Scholar 

  • Ciocca V, Bregman AS (1987) Perceived continuity of gliding and steady-state tones through interrupting noise. Percept. Psychophys. 42: 476–484.

    Article  Google Scholar 

  • Coltheart M, Rastle K, Perry C, Langdon R, Ziegler J (2001) DRC: Adual route cascaded model of visual word recognition and reading aloud. Psychol. Rev. 108: 204–256.

    Article  Google Scholar 

  • Dannenbring GL (1976) Perceived auditory continuity with alternately rising and falling transitions. Can. J. Psychol. 30: 99–114.

    Article  Google Scholar 

  • David O, Cosmelli D, Friston KJ (2004) Evaluation of different measures of functional connectivity using a neural mass model. Neuroimage 21: 659–673.

    Article  Google Scholar 

  • David O, Friston KJ (2003) A neural mass model for MEG/EEG: coupling and neuronal dynamics. Neuroimage 20: 1743–1755.

    Article  Google Scholar 

  • David O, Harrison L, Friston KJ (2005) Modelling event-related responses in the brain. Neuroimage 25: 756–770.

    Article  Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical Neuroscience. MIT Press, Cambridge, MA.

    Google Scholar 

  • Deco G, Rolls ET, Horwitz B (2004) ‘What’ and ‘where’ in visual working memory: a computational neurodynamical perspective for integrating fMRI and singe-cell data. J. Cogn. Neurosci. 16: 683–701.

    Article  Google Scholar 

  • Desimone R, Albright TD, Gross CG, Bruce C (1984) Stimulus-selective properties of inferior temporal neurons in themacaque. J Neurosci 4: 2051–2062.

    Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Ann. Rev. Neurosci. 18: 193–222.

    Article  Google Scholar 

  • Desimone R, Ungerleider LG (1989). Neural mechanisms of visual processing in monkeys. In Goodglass H & Damasio AR (Eds.), Handbook of Neuropsychology 267–300. Elsevier, Amsterdam

    Google Scholar 

  • Dominey PF, Arbib MA (1992) A cortico-subcortical model for generation of spatially accurate sequential saccades. Cereb. Cortex 2: 153–175.

    Article  Google Scholar 

  • Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Price CJ, Zeki S, Ashburner J, Penny W (Eds.) (2004) Human Brain Function. Elsevier, Academic Press, San Diego, CA

    Google Scholar 

  • Friston KJ (1994) Functional and effective connectivity inneuroimaging: a synthesis. Human Brain Mapp. 2: 56–78.

    Article  Google Scholar 

  • Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ (1991) Investigating a network model of word generation with positronemission tomography. Proc. R. Soc. Lond. B 244: 101–106.

    Article  Google Scholar 

  • Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage 19: 1273–1302.

    Article  Google Scholar 

  • Funahashi S, Bruce C, Goldman-Rakic PS (1990) Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. J. Neurophysiol. 63: 814–831.

    Google Scholar 

  • Fuster JM (2000) The module: Crisis of a paradigm (Review of The New Cognitive Neurosciences, 2nd Ed., edited by M. S. Gazzaniga).Neuron 26: 51–53.

    Article  Google Scholar 

  • Gitelman DR, Penny WD, Ashburner J, Friston KJ (2003) Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution. Neuroimage 19: 200–207.

    Article  Google Scholar 

  • Griffiths TD, Warren JD (2004) What is an auditory object? Nat Rev Neurosci 5: 887–892.

    Article  Google Scholar 

  • Harrison RV, Harel N, Hamrahi H, Panesar J, Mori N, Mount RJ (2000) Local haemodynamic changes associated with neural activity in auditory cortex. Acta Oto-laryngol. 120: 255–258.

    Article  Google Scholar 

  • Haxby JV, Horwitz B, Ungerleider LG, Maisog JM, Pietrini P, Grady CL (1994) The functional organization of human extrastriate cortex: A PET-rCBF study of selective attention to faces and locations. J. Neurosci. 14: 6336–6353.

    Google Scholar 

  • Haxby JV, Ungerleider LG, Horwitz B, Rapoport SI, Grady CL (1995) Hemispheric differences in neural systems for face working memory: A PET-rCBF Study. Human Brain Mapp. 3: 68–82.

    Article  Google Scholar 

  • Horwitz B (1990) Simulating functional interactions in the brain: A model for examining correlations between regional cerebralmetabolic rates. Int. J. Biomed. Comput. 26: 149–170.

    Article  Google Scholar 

  • Horwitz B (1994) Data analysis paradigms for metabolic-flow data: Combining neural modeling and functional neuroimaging. Human Brain Mapp. 2: 112–122.

    Article  Google Scholar 

  • Horwitz B (2003) The elusive concept of brain connectivity. Neuroimage 19: 466–470.

    Article  Google Scholar 

  • Horwitz B (2004) Relating fMRI and PET signals to neural activity by means of large-scale neural models. Neuroinformatics 2: 251–266.

    Article  Google Scholar 

  • Horwitz B, Friston KJ, Taylor JG (2000) Neural modeling and functional brain imaging: an overview. Neural Networks 13: 829–846.

    Article  Google Scholar 

  • Horwitz B, Glabus M (2005) Neural modeling and functional brain imaging: The interplay between data-fitting and simulation approaches. Int. Rev. Neurobiol. 66: 267–290.

    Article  Google Scholar 

  • Horwitz B, Poeppel D (2002) How can EEG/MEG and fMRI/PET data be combined? Human Brain Mapp. 17: 1–3.

    Article  Google Scholar 

  • Horwitz B, Soncrant TT, Haxby JV (1992). Covariance analysis of functional interactions in the brain using metabolic and bloodflow data. In Gonzalez-Lima F, Finkenstaedt T, Scheich H (Eds.), Advances in Metabolic Mapping Techniques for Brain Imaging of Behavioral and Learning Functions 189–217. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Horwitz B, Sporns O (1994) Neural modeling and functional neuroimaging. Human Brain Mapp. 1: 269–283.

    Article  Google Scholar 

  • Horwitz B, Tagamets M-A (1999) Predicting human functional maps with neural net modeling. Human Brain Mapp. 8: 137–142.

    Article  Google Scholar 

  • Horwitz B, Tagamets M-A, McIntosh AR (1999) Neural modeling, functional brain imaging, and cognition. Trends Cogn. Sci.3: 91–98.

    Article  Google Scholar 

  • Horwitz B, Warner B, Fitzer J, Tagamets M-A, Husain FT, Long TW (2005) Investigating the neural basis for functional and effective connectivity: Application to fMRI. Phil. Trans. Roy. Soc. Lond. B360: 1093–1108.

    Article  Google Scholar 

  • Hubel DH, Wiesel TN (1977) Functional architecture of macaquemomkey visual cortex. Proc. R. Soc. Lond. B Biol. Sci. 198: 1–59.

    Article  Google Scholar 

  • Husain FT, Lozito TP, Ulloa A, Horwitz B (2005) Investigating the neural basis of the auditory continuity illusion. J. Cogn. Neurosci. 17: 1275–1292.

    Article  Google Scholar 

  • Husain FT, Tagamets M-A, Fromm SJ, Braun AR, Horwitz B (2004) Relating neuronal dynamics for auditory object processing to neuroimaging activity. NeuroImage 21: 1701–1720.

    Article  Google Scholar 

  • Jansen BH, Rit VG (1995) Electroencephalogram and visual evokedpotential generation in a mathematical model of coupled corticalcolumns. Biol. Cybern. 73: 357–366.

    Article  MATH  Google Scholar 

  • Jirsa VK, Haken H (1997) A derivation of a macroscopic field theory of the brain from the quasi-microscropic neural dynamics. Physica D 99: 503–526.

    Article  MATH  Google Scholar 

  • Jueptner M, Weiller C (1995) Does measurement of regional cerebral blood flow reflect synaptic activity? – Implications for PET and fMRI. NeuroImage 2,148–156

    Article  Google Scholar 

  • Just MA, Carpenter PA, Varma S (1999) Computational modeling of high-level cognition and brain function. Human Brain Mapp. 8: 128–136.

    Article  Google Scholar 

  • Kaas JH, Hackett TA, Tramo MJ (1999) Auditory processing inprimate cerebral cortex. Curr. Opinion Neurobiol. 9: 164–170.

    Article  Google Scholar 

  • Kikuchi Y, Horwitz B, Mishkin M (2004) A patch of neurons in the monkey’s rostral superior temporal gyrus are activated by conspecific calls. Abstracts, Soc. Neurosci. 30, Abstract#650.10

    Google Scholar 

  • Kikuchi-Yorioka Y, Sawaguchi T (2000) Parallel visuospatial and audiospatial working memory processes in the monkey dorsolateralprefrontal cortex. Nat Neurosci 3: 1075–1076.

    Article  Google Scholar 

  • Kronhaus DM, Willshaw DJ (2006) The Cingulate as a Catalyst Region for Global Dysfunction: a Dynamical Modelling Paradigm. Cereb.Cortex 16,1212–1224

    Article  Google Scholar 

  • Kubovy M, Van Valkenburg D (2001) Auditory and visual objects. Cognition 80: 97–126.

    Article  Google Scholar 

  • Lauritzen M (2001) Relationship of spikes, synaptic activity, and local changes of cerebral blood flow. J Cereb Blood Flow Metab 21: 1367–1383.

    Article  Google Scholar 

  • Lee L, Friston KJ, Horwitz B (2006) Large-scale neural models and dynamic causal modelling. Neuroimage 30: 1243–1254.

    Article  Google Scholar 

  • Logothetis NK (2003) MR imaging in the non-human primate: studies of function and of dynamic connectivity. Curr. Op. Neurobiol. 13: 630–642.

    Article  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412: 150–157.

    Article  Google Scholar 

  • May P, Tiitinen H, Ilmoniemi RJ, Nyman G, Taylor JG, Naatanen R (1999) Frequency change detection in human auditory cortex. J. Comput. Neurosci. 6: 99–120.

    Article  MATH  Google Scholar 

  • McClelland JL, Rumelhart DE (1986) Parallel Distributed Processing. MIT Press, Cambridge, MA.

    Google Scholar 

  • McIntosh AR (2000) Towards a network theory of cognition. Neural Netw 13: 861–870.

    Article  Google Scholar 

  • McIntosh AR, Gonzalez-Lima F (1991) Structural modeling of functional neural pathways mapped with 2-deoxyglucose: effect of acoustic startle habituation on the auditory system. Brain Res. 547: 295–302.

    Article  Google Scholar 

  • McIntosh AR, Gonzalez-Lima F (1994) Structural equation modeling and its application to network analysis in functional brain imaging. Human Brain Mapp. 2: 2–22.

    Article  Google Scholar 

  • McIntosh AR, Grady CL, Ungerleider LG, Haxby JV, Rapoport SI, Horwitz B (1994) Network analysis of cortical visual pathways mapped with PET.J. Neurosci. 14: 655–666.

    Google Scholar 

  • Mendelson JR, Cynader MS (1985) Sensitivity of cat primaryauditory cortex (A1) neurons to the direction and rate offrequency modulation. Brain Res. 327: 331–335.

    Article  Google Scholar 

  • Nunez P (1981) Electric Fields of the Brain. Oxford Univ. Press, New York.

    Google Scholar 

  • Penny WD, Stephan KE, Mechelli A, Friston KJ (2004) Comparing dynamic causal models. Neuroimage 22: 1157–1172.

    Article  Google Scholar 

  • Petrides M (1994) Frontal lobes and behaviour. Curr Opin Neurobiol 4: 207–211.

    Article  Google Scholar 

  • Postle BR, D’Esposito M (1999) “What”-Then-Where” in visual working memory: an event-related fMRI study. J. Cogn. Neurosci. 11: 585–597.

    Article  Google Scholar 

  • Rao SC, Rainer G, Miller EK (1997) Integration of what and where in the primate prefrontal cortex. Science 276: 821–824.

    Article  Google Scholar 

  • Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci U S A 97: 11800–11806.

    Article  Google Scholar 

  • Robinson PA, Rennie CJ, Rowe DL, O’Connor SC, Gordon E (2005) Multiscale brain modelling. Phil. Trans. Roy. Soc. Lond. B 360: 1043–1050.

    Google Scholar 

  • Robinson PA, Rennie CJ, Wright JJ, Bahramali H, Gordon E, Rowe DL (2001) Prediction of electroencephalographic spectra from neurophysiology. Phys. Rev. E 63, 021903

    Article  Google Scholar 

  • Rolls ET, Deco G (2002) Computational Neuroscience of Vision. Oxford University Press, Oxford.

    Google Scholar 

  • Rolls ET, Treves A (1998) Neural Networks and Brain function. Oxford University Press, Oxford.

    Google Scholar 

  • Stam CJ, Pijn JP, Suffczynski P, Lopes da Silva FH (1999) Dynamics of the human alpha rhythm: evidence for non-linearity? Clin. Neurophysiol. 110: 1801–1813.

    Article  Google Scholar 

  • Sugita Y (1997) Neural correlates of auditory induction in the cat cortex. Neuro report 8: 1155–1159.

    Article  Google Scholar 

  • Tagamets M-A, Horwitz B (1998) Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cereb. Cortex 8: 310–320.

    Article  Google Scholar 

  • Tagamets M-A, Horwitz B (2001) Interpreting PET and fMRI measures of functional neural activity: The effects of synaptic inhibition on cortical activation in human imaging studies. Brain Res. Bull. 54: 267–273.

    Article  Google Scholar 

  • Tononi G, Sporns O, Edelman GM (1992) Reentry and the problem ofintegrating multiple cortical areas: Simulation of dynamicintegration in the visual system. Cereb. Cortex 2: 310–335.

    Article  Google Scholar 

  • Ungerleider LG, Mishkin M (1982). Two cortical visual systems. In Ingle DJ, Goodale MA, Mansfield RJW (Eds.), Analysis of Visual Behavior 549–586. MIT Press, Cambridge

    Google Scholar 

  • Wilson FAW, O Scalaidhe SP, Goldman-Rakic PS (1993) Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260: 1955–1958.

    Article  Google Scholar 

  • Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12: 1–24.

    Article  Google Scholar 

  • Zeki S (1990) Functional specialization in the visual cortex: The generation of separate constructs and their multistage integration. In Edelman GM, Gall WE, Cowan WM (Eds.), Signal and Sense 85–130. Wiley-Liss, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Horwitz, B., Husain, F.T. (2007). Simulation Frameworks for Large-Scale Brain Systems. In: Jirsa, V.K., McIntosh, A. (eds) Handbook of Brain Connectivity. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71512-2_9

Download citation

Publish with us

Policies and ethics