Skip to main content

Computational Modeling of Circadian Rhythms in Suprachiasmatic Nucleus Neurons

  • Conference paper
Book cover Neural Information Processing (ICONIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4985))

Included in the following conference series:

  • 1196 Accesses

Abstract

The suprachiasmatic nucleus(SCN) is a self-sustaining circadian rhythm generator in mammals. SCN neurons exhibit irregular and complex firing activity, but their firing rates display well-defined deterministic behavior with a periodicity of 24 hours. Their underlying mechanisms are still unclear. In this study, we aim to develop the computational model using NEURON, a software package for biological neuron simulation, to examine channel contributions to circadian rhythms. We found that SCN neurons produced circadian rhythms of firing activity through an interplay of various channels, including the potassium and sodium channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Inouye, S.I.T., Kawamura, H.: Persistence of Circadian Rhythmicity in a Mammalian Hypothalamic“Island”Containing the Suprachiasmatic Nucleus. Proceedings of the National Academy of Sciences 76(11), 5962–5966 (1979)

    Article  Google Scholar 

  2. Reppert, S.M., Weaver, D.R.: Molecular Analysis Of Mammalian Circadian Rhythms. Annual Review of Physiology 63(1), 647–676 (2001)

    Article  Google Scholar 

  3. References, S., Kim, Y., Dudek, F.: Membrane properties of rat suprachiasmatic nucleus neurons receiving optic nerve input. J Physiol 464, 229–243 (1993)

    Google Scholar 

  4. de Jeu, M., Hermes, M., Pennartz, C.: Circadian modulation of membrane properties in slices of rat suprachiasmatic nucleus. Neuroreport 9(16), 3725–3729 (1998)

    Article  Google Scholar 

  5. Thomson, A.M., West, D.C., Vlachonikolis, I.G.: Regular firing patterns of suprachiasmatic neurons maintained in vitro. Neurosci. Lett. 52(3), 329–334 (1984)

    Article  Google Scholar 

  6. Thomson, A.M., West, D.C.: Factors Affecting Slow Regular Firing in the Suprachiasmatic Nucleus In Vitro. Journal of Biological Rhythms 5(1), 59 (1990)

    Article  Google Scholar 

  7. Jackson, A.C., Yao, G.L., Bean, B.P.: Mechanism of Spontaneous Firing in Dorsomedial Suprachiasmatic Nucleus Neurons. Journal of Neuroscience 24(37), 7985–7998 (2004)

    Article  Google Scholar 

  8. Kononenko, N.I., Medina, I., Dudek, F.E.: Persistent subthreshold voltage-dependent cation single channels in suprachiasmatic nucleus neurons. Neuroscience 129(1), 85–92 (2004)

    Article  Google Scholar 

  9. Reppert, S.M., Weaver, D.R.: Coordination of circadian timing in mammals. Nature 418, 935–941 (2002)

    Article  Google Scholar 

  10. Pennartz, C.M.A., Bierlaagh, M.A., Geurtsen, A.M.S.: Cellular Mechanisms Underlying Spontaneous Firing in Rat Suprachiasmatic Nucleus: Involvement of a Slowly Inactivating Component of Sodium Current. Journal of Neurophysiology 78(4), 1811–1825 (1997)

    Google Scholar 

  11. Kononenko, N.I., Shao, L.R., Dudek, F.E.: Riluzole-Sensitive Slowly Inactivating Sodium Current in Rat Suprachiasmatic Nucleus Neurons. Journal of Neurophysiology 91(2), 710–718 (2004)

    Article  Google Scholar 

  12. Taddese, A., Bean, B.P.: Subthreshold Sodium Current from Rapidly Inactivating Sodium Channels Drives Spontaneous Firing of Tuberomammillary Neurons. Neuron 33(4), 587–600 (2002)

    Article  Google Scholar 

  13. Itri, J.N., Michel, S., Meijer, J.H., Colwell, C.S.: Fast delayed rectifier potassium current is required for circadian neural activity. Nature Neuroscience 8, 650–656 (2005)

    Article  Google Scholar 

  14. Kuhlman, S.J., McMahon, D.G.: Rhythmic regulation of membrane potential and potassium current persists in SCN neurons in the absence of environmental input. Eur J Neurosci 20(4), 1113–1117 (2004)

    Article  Google Scholar 

  15. Meredith, A.L., Wiler, S.W., Miller, B.H., Takahashi, J.S., Fodor, A.A., Ruby, N.F., Aldrich, R.W.: BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output. Nature Neuroscience 9, 1041–1049 (2006)

    Article  Google Scholar 

  16. Pitts, G.R., Ohta, H., McMahon, D.G.: Daily rhythmicity of large-conductance Ca 2-activated K currents in suprachiasmatic nucleus neurons. Brain Research 1071(1), 54–62 (2006)

    Article  Google Scholar 

  17. Pennartz, C.M.A., de Jeu, M.T.G., Bos, N.P.A., Schaap, J., Geurtsen, A.M.S.: Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock. Nature 416, 286–290 (2002)

    Article  Google Scholar 

  18. Colwell, C.S.: Circadian modulation of calcium levels in cells in the suprachiasmatic nucleus. European Journal of Neuroscience 12(2), 571–576 (2000)

    Article  Google Scholar 

  19. Ikeda, M., Sugiyama, T., Wallace, C.S., Gompf, H.S., Yoshioka, T., Miyawaki, A., Allen, C.N.: Circadian Dynamics of Cytosolic and Nuclear Ca2+ in Single Suprachiasmatic Nucleus Neurons. Neuron 38(2), 253–263 (2003)

    Article  Google Scholar 

  20. Lundkvist, G.B., Kwak, Y., Davis, E.K., Tei, H., Block, G.D.: A Calcium Flux Is Required for Circadian Rhythm Generation in Mammalian Pacemaker Neurons. Soc Neuroscience (2005)

    Google Scholar 

  21. Leloup, J.C., Goldbeter, A.: Toward a detailed computational model for the mammalian circadian clock. Proceedings of the National Academy of Sciences 100(12), 7051–7056 (2003)

    Article  Google Scholar 

  22. Smolen, P., Baxter, D.A., Byrne, J.H.: Modeling Circadian Oscillations with Interlocking Positive and Negative Feedback Loops. Journal of Neuroscience 21(17), 6644 (2001)

    Google Scholar 

  23. Gonze, D., Halloy, J., Goldbeter, A.: Deterministic Versus Stochastic Models for Circadian Rhythms. Journal of Biological Physics 28(4), 637–653 (2002)

    Article  Google Scholar 

  24. Kononenko, N.I., Dudek, F.E.: Noise of the slowly inactivating Na current in suprachiasmatic nucleus neurons. Neuroreport 16(9), 981–985 (2005)

    Article  Google Scholar 

  25. Kononenko, N.I., Dudek, F.E.: Mechanism of Irregular Firing of Suprachiasmatic Nucleus Neurons in Rat Hypothalamic Slices. Journal of Neurophysiology 91(1), 267–273 (2004)

    Article  Google Scholar 

  26. Gillette, M.U., Medanic, M., McArthur, A.J., Liu, C., Ding, J.M., Faiman, L.E., Weber, E.T., Tcheng, T.K., Gallman, E.A.: Intrinsic neuronal rhythms in the suprachiasmatic nuclei and their adjustment. Ciba Found Symp 183, 134–144 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masumi Ishikawa Kenji Doya Hiroyuki Miyamoto Takeshi Yamakawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, H., Jeong, J. (2008). Computational Modeling of Circadian Rhythms in Suprachiasmatic Nucleus Neurons. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4985. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69162-4_97

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69162-4_97

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69159-4

  • Online ISBN: 978-3-540-69162-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics