Skip to main content

Definition and Realisation of the SIRGAS Vertical Reference System within a Globally Unified Height System

  • Chapter
Dynamic Planet

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 130))

Abstract

The new SIRGAS vertical reference system is based on the determination of an equipotential reference surface W 0 within a global definition, i.e. optimally fitting the worldwide mean sea surface. The corresponding W 0 value (mean geopotential value over the total ocean surface) is empirically estimated using different combinations of global gravity models (EGM96, TEG4, GGM02S, EIGEN-CG03C) and mean sea surface models (CLS01, KMS04, GFSC00.1 and a series of annual models from 1993 to 2001 derived at DGFI from T/P). The results show the W 0 dependence on the GGM’s degree n, on the latitudinal extension, and on time. The recommended W 0 value (62 636 853,4 m 2 s −2) is derived from EIGEN-CG03C (n = 120) and referred to the epoch 2000.0. It differs from previous computations by 3 m 2 s −2 (e.g. Bursa et al. 2002, Bursa et al. 2004). A preliminary realisation of this new reference level is accomplished by transforming the existing South American classical height datums (defined individually at different tide gauges) through the combination of GNSS positioning, high resolution (quasi)geoid models and physical heights derived from spirit levelling and terrestrial gravity data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, O. B., A. L. Vest, P. Knudsen, (2004). KMS04 mean sea surface model and inter-annual sea level variability. Poster presented at EGU Gen. Ass. 2005, Vienna, Austria, 24–29, April.

    Google Scholar 

  • AVISO (1996). AVISO user handbook. Merged Topex/Poseidon products (GDR-Ms). CLS/CNES, AVI-NT-02-101-CN. 3rd Ed., July.

    Google Scholar 

  • Bursa, M, K. Radej, Z. Sima, S. True, V. Vatrt, (1997). Determination of the geopotential scale factor from Topex/Poseidon satellite altimetry. Studia geoph. et geod. 41:203–215.

    Article  Google Scholar 

  • Bursa, M, J. Kouba, K. Radej, S. True, V. Vatrt, M. Vojtiskova, (1998). Mean Earth’s equipotential surface from Topex/Poseidon altimetry. Studia geoph. et geod. 42:456–466.

    Article  Google Scholar 

  • Bursa, M., J. Kouba, M. Kumar, A. Müller, K. Radej, S. True, V. Vatrt, M. Vojtiskova, (1999). Geoidal geopotential and world height system. Studia geoph. et geod. 43: 327–337.

    Article  Google Scholar 

  • Bursa, M., S. Kenyon, J. Kouba, K. Radej, V. Vatrt, M. Vojtiskova, J. Simek, (2002). World height system specified by geopotential at tide gauge stations. IAG Symposia, 124:291–296. Springer.

    Google Scholar 

  • Bursa, M., S. Kenyon, J. Kouba, Z. Sima, V. Vatrt, M. Vojtiskova, (2004). A global vertical reference frame based on four regional vertical datums. Studia geoph. et geod. 48:493–502.

    Article  Google Scholar 

  • Chambers, D., S. A. Hayes, J. C. Ries, T. J. Urban, (2003). New Topex sea state bias models and their effect on global mean sea level. J. Geophys. Res. 108(C10), 3305,10.1029/2003JC001839.

    Google Scholar 

  • Drewes, H., L. Sanchez, D. Blitzkow, S. de Freitas, (2002): Scientific foundations of the SIRGAS vertical reference system. IAG Symposia 124:297–301. Springer.

    Google Scholar 

  • Förste, C, F. Flechtner, R. Schmidt, U. Meyer, R. Stubenvoll, F. Barthelmes, R. König, K.H. Neumayer, M. Rothacher, Ch. Reigber, R. Biancale, S. Bruinsma, J.-M. Lemoine, J.C. Raimondo, (2005) A New High Resolution Global Gravity Field Model Derived From Combination of GRACE and CHAMP Mission and Altimetry/Gravimetry Surface Gravity Data. Poster presented at EGU General Assembly 2005, Vienna, Austria, 24–29, April.

    Google Scholar 

  • Heck, B. (2004). Problems in the definition of vertical reference frames. IAG Symposia 127:164–174.

    Google Scholar 

  • Heiskanen W. And H. Moritz (1967). Physical Geodesy. W. H. Freeman and company. San Francisco.

    Google Scholar 

  • Hernandez, F, Ph. Schaeffer (2001a). MSS CLS01 http://www.cls.fr/html/oceano/projects/mss/cls_01_en.html

    Google Scholar 

  • Hernandez, F, Ph. Schaeffer (2001b). The CLS01 mean sea surface: a validation with the GFSC00.1 surface. Available at http://www.cls.ir/html/oceano/projects/mss/cls_01_en.html

    Google Scholar 

  • IAG SC3 Rep. (1995). IAG SC3 final report, Travaux de L’ Association Internationale de Géodésie, 30: 370–384

    Google Scholar 

  • Koblinsky et al. (1999). NASA Ocean Altimeter Pathfinder Project, Report 1: Data processing handbook, NASA/TM-1998-208605, April.

    Google Scholar 

  • Lemoine, F., S. Kenyon, J. Factor, R. Trimmer, N. Pavlis, D. Chinn C. Cox, S. Kloslo, S. Luthcke, M. Torrence, Y. Wang, R. Williamson, E. Pavlis, R. Rapp, T. Olson. (1998). The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96, NASA, Goddard Space Flight Center, Greenbelt.

    Google Scholar 

  • Lettelier, T., F. Lyard, F. Lefebre, (2004). The new global tidal solution: FES2004. Presented at: Ocean Surface Topography Science Team Meeting. St. Petersburg, Florida. Nov. 4–6.

    Google Scholar 

  • Luz, R. T., L. P. S. Fortes, M. Hoyer, H. Drewes, (2002): The vertical reference frame for the Americas-the SIRGAS 2000 GPS campaign. IAG Symposia 124: 301–305, Springer.

    Google Scholar 

  • Mather, R. S. (1978). The role of the geoid in four-dimensional geodesy. Marine Geodesy, 1:217–252.

    Article  Google Scholar 

  • Pavlis, N. (1991). Estimation of geopotential differences over intercontinental locations using satellite and terrestrial measurements. The Ohio State University, Department of Geodetic Science and Surveying. Report No. 409.

    Google Scholar 

  • Pavlis, N. (1996). Modification of program f477 (Rapp 1982)

    Google Scholar 

  • Rapp, R. (1982). A FORTRAN program for the computation of gravimetric quantities from high degree spherical harmonic expansions. Rep. No. 344. Dept of Geodetic Science and Surveying, The Ohio State University, Columbus Ohio.

    Google Scholar 

  • Rapp, P.; N. Balasubramania. (1992). A conceptual formulation of a world height system. The Ohio State University, Department of Geodetic Science and Surveying. Report No. 421.

    Google Scholar 

  • Rapp, R., (1994). Separation between reference surfaces of selected vertical datums. Bull. Géod. 69:26–31.

    Article  Google Scholar 

  • Rummel, R.; P. Teunissen. (1988). Height datum definition, height datum connection and the role of the geodetic boundary value problem. Bull. Géod. 62: 477–498.

    Article  Google Scholar 

  • Sánchez, L. (2003): Bestimmung der Höhenreferenzfldche fur Kolumbien. Diplomarbeit. TU Dresden.

    Google Scholar 

  • SIRGAS (1997): Final Report. Working Groups I and II-SIRGAS Relatório Final Grupos de Trabalho I e II. Institute Brasileiro de Geografia e Estatística, Rio de Janeiro.

    Google Scholar 

  • Smith (1998). Program geopot97, v. 0.4c. http://www.ngs.noaa.gov/GEOID/RESEARCH_SOFTWARE/research_software.html.

    Google Scholar 

  • Tapley M. Kim, S. Poole, M. Cheng, D. Chambers, J. Ries, (2001). The TEG-4 Gravity field model. AGU Fall 2001. Abstract G51A-0236

    Google Scholar 

  • Tapley J., Ries, S. Bettadpur, D. Chambers, M. Cheng, F. Condi, B. Gunter, Z. Kang, P. Nagel, R. Pastor, T. Pekker, S. Poole, F. Wang,. (2005). GGM02: An improved Earth gravity field model from GRACE. Journal of Geodesy, doi 10.1007/s00190-005-0480-z.

    Google Scholar 

  • Torge (2001). Geodesy. 3rd Edition. De Gruyter. Berlin, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sanchez, L. (2007). Definition and Realisation of the SIRGAS Vertical Reference System within a Globally Unified Height System. In: Tregoning, P., Rizos, C. (eds) Dynamic Planet. International Association of Geodesy Symposia, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49350-1_92

Download citation

Publish with us

Policies and ethics