Skip to main content
Book cover

The Andes pp 513–535Cite as

Mechanism of the Andean Orogeny: Insight from Numerical Modeling

  • Chapter

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

The Andes were formed by Cenozoic tectonic shortening of the South American plate margin overriding the subducting Nazca Plate. Using coupled, thermo-mechanical, numerical modeling of the dynamic interaction between subducting and overriding plates, we searched for factors controlling the intensity of the tectonic shortening. From our modeling, constrained by geological and geophysical observations, we infer that the most important factor was fast and accelerating (from 2 to 3 cm yr−1) westward drift of the South American Plate, whereas possible changes in the convergence rate were not as important. Other important factors are the crustal structure of the overriding plate and the shear coupling at the plate interface.

The model in which the South American Plate has a thick (40–45 km at 35 Ma) crust and relatively high friction coefficient (0.05) at the Nazca-South American plate interface generates more than 300 km of tectonic shortening over the past 35 million years and replicates well the crustal structure and evolution of the high Central Andes. However, modeling does not confirm that possible climate-controlled changes to the sedimentary trench-fill during the last 30 million years might have significantly influenced the upperplate shortening rate. The model with initially thinner (less than 40 km) continental crust and a lower friction coefficient (less than 0.015) results in less than 40 km of shortening in the South American Plate, replicating the situation in the Southern Andes.

During upper-plate deformation, the processes that cause a reduction in lithospheric strength and an increase in interplate coupling are particularly important. The most significant of these processes appears to be: (1) delamination of the lower crust and mantle lithosphere, driven by gabbro-eclogite transformation in the thickening lower crust, and (2) mechanical failure of the foreland sediments. The modeling demonstrates that delaminating lithosphere interacts with subduction-zone corner flow, influencing both the rate of tectonic shortening and magmatic-arc productivity, and suggests an anti-correlation between these two parameters. Our model also predicts that the down-dip limit of the frictional coupling domain between the Nazca and South American Plates should be ∼15–20 km deeper in the Southern Andes (south of 28° S) compared to the high Central Andes, which is consistent with GPS and seismological observations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allmendinger RW, Gubbels T (1996) Pure and simple shear plateau uplift, Altiplano-Puna, Argentina and Bolivia: Tectonophysics 259:1–13

    Google Scholar 

  • Allmendinger RW, Jordan TE, Kay SM, Isacks BL (1997) The evolution of the Altiplano-Puna plateau of the Central Andes. Ann Rev Earth Planet Sci 25:139–174

    Article  Google Scholar 

  • Babeyko AY, Sobolev SV (2005) Quantifying different modes of the Late Cenozoic shortening in the Central Andes, Geology 33:621–624

    Article  Google Scholar 

  • Babeyko AY, Sobolev SV, Trumbull RB, Oncken O, Lavier LL (2002) Numerical models of crustal-scale convection and partial melting beneath the Altiplano-Puna plateau. Earth Planet Sci Lett 199:373–388

    Article  Google Scholar 

  • Babeyko AY, Sobolev SV, Vietor T, Oncken O, Trumbull RB (2006) Numerical study of weakening processes in the Central Andean backarc. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 495–512, this volume

    Google Scholar 

  • Beck SL, Zandt G (2002) The nature of orogenic crust in the Central Andes. J Geophys Res 107: doi 10.1029/2000JB000124

    Google Scholar 

  • Bevis M, Smalley R Jr, Herring T, Godoy J, Galban F (1999) Crustal motion north and south of the Arica deflection: Comparing recent geodetic results from the Central Andes. Geochem Geophys Geosyst 1: doi 1999GC000011

    Google Scholar 

  • Bird P (1978) Stress and temperature in subduction zones: Tonga and Mariana. Geophys J R Astron Soc 55:411–434

    Google Scholar 

  • Christensen UR (1996) The influence of trench migration on slab penetration into the lower mantle. Earth Planet Sci Lett 140(1–4): 27–39

    Article  Google Scholar 

  • Clift PD, Vannucchi P (2004) Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev Geophys 42: doi 10.1029/2003RG000127

    Google Scholar 

  • Cundall PA, Board M (1988) A microcomputer program for modeling large-strain plasticity problems. In: Sowboda G (ed) 6th International Conference in Numerical Methods in Geomechanics, AA Balkema, Brookfield VT, pp 2101–2108

    Google Scholar 

  • Gerya TV, Yuen DA (2003) Rayleigh-Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones. Earth Planet Sci Lett 212:47–62

    Article  Google Scholar 

  • Gerya TV, Stoeckhert B, Perchuk AL (2002) Exhumation of highpressure metamorphic rocks in a subduction channel — a numerical simulation. Tectonics 6(21):1–19

    Google Scholar 

  • Gerya TV, Connolly JAD, Yuen DA, Gorczyk W, Capel AM (2006) Seismic implications of mantle wedge plumes. Phys Earth Planet Int doi 10.1016/j.pepi.2006.02.005

    Google Scholar 

  • Giese P, Scheuber E, Schilling F, Schmitz M, Wigger P (1999) Crustal thickening processes in the Central Andes and the different natures of the Moho-discontinuity. J S Am Earth Sci 12:201–220

    Article  Google Scholar 

  • Gleason GC, Tullis J (1995) A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics 247:1–23

    Article  Google Scholar 

  • Gregory-Wodzicki KM (2000) Uplift history of the Central and Northern Andes: a review. Geol Soc Am Bull 112:1091–1105

    Article  Google Scholar 

  • Hacker BR, Abers GA, Peacock SM (2003) Subduction factory 1. Theoretical mineralogy, density, seismic wave speeds, and H2O content. J Geophys Res 108: doi 10.1029/2001JB001127

    Google Scholar 

  • Handy MR, Wissing S, Streit SE (1999) Strength and structure of mylonite with combined frictional-viscous rheology and varied bimineralic composition. Tectonophysics 303:175–192

    Article  Google Scholar 

  • Hassani R, Jongmans D, Chery J (1997) Study of plate deformation and stress in subduction processes using two-dimensional numerical models. J Geophys Res 102:17951–17965

    Article  Google Scholar 

  • Heuret A, Lallemand S (2005) Plate motions, slab dynamics and backarc deformation. Phys Earth Planet Int 149:31–51

    Article  Google Scholar 

  • Hindle D, Kley J, Oncken O, Sobolev SV (2005) Crustal flux and crustal balance from shortening in the Central Andes. Earth Planet Sci Lett 230:113–124

    Article  Google Scholar 

  • Hirth G, Kohlstedt DL (1996) Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett 144:93–108

    Article  Google Scholar 

  • Hoffmann-Rothe A, Kukowski N, Dresen G, Echtler H, Oncken O, Klotz J, Scheuber E, Kellner A (2006) Oblique convergence along the Chilean margin: partitioning, margin-parallel faulting and force interaction at the plate interface. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 125–146, this volume

    Google Scholar 

  • Husson L, Sempere T (2003) Thickening the Altiplano crust by gravity-driven crustal channel flow. Geophys Res Lett 30: doi 10.1029/2002GL016877

    Google Scholar 

  • Hyndman RD, Currie CA, Mazzotti SP (2005) Subduction zone backarcs, mobile belts, and orogenic heat. GSA Today 15:4–10

    Google Scholar 

  • Isacks BL (1988) Uplift of the Central Andean plateau and bending of the Bolivian orocline. J Geophys Res 93:3211–3231

    Article  Google Scholar 

  • Kameyama M, Yuen DA, Karato SI (1999) Thermal-mechanical effects of low-temperature plasticity (the Peierls mechanism) on the deformation of a viscoelastic shear zone. Earth Planet Sci Lett 168:159–172

    Article  Google Scholar 

  • Kay RW, Kay SM (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189

    Article  Google Scholar 

  • Kay SM, Mpodozis C, Coira B (1999) Neogene magmatism, tectonism and mineral deposits of the Central Andes (22° to 33° S) In: Skinner BJ (ed) Geology and ore deposits of the Central Andes. Soc Econ Geol Spec pub 7, pp 27–59

    Google Scholar 

  • Khazaradze G, Klotz J (2002) Short-and long-term effects of GPS measured crustal deformation rates along the south Central Andes. J Geophys Res B108(6)

    Google Scholar 

  • Kley J, Monaldi C (1998) Tectonic shortening and crustal thickness in the Central Andes: how good is the estimate? Geology 26:723–726

    Article  Google Scholar 

  • Kley J, Monaldi CR, Salfity JL (1999) Along-strike segmentation of the Andean foreland: causes and consequences. Tectonophysics 301:75–94

    Article  Google Scholar 

  • Klotz J, Abolghasem A, Khazaradze G, Heinze B, Vietor T, Hackney R, Bataille K, Maturana R, Viramonte J, Perdomo R (2006) Long-term signals in the present-day deformation field of the Central and Southern Andes and constraints on the viscosity of the Earth’s upper mantle. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 65–90, this volume

    Google Scholar 

  • Kopf A, Brown KM (2003) Friction experiments on saturated sediments and their implications for the stress state of the Nankai and Barbados subduction thrusts. Marine Geology 202(3–4):193–210

    Article  Google Scholar 

  • Koulakov I, Sobolev SV, Asch G (in press) P-and S-velocity images of the lithosphere-asthenosphere system in the Central Andes from local-source tomographic inversion. Geophys J Int

    Google Scholar 

  • Lamb S, Davis P (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425:792–797

    Article  Google Scholar 

  • Lamb S, Hoke L (1997) Origin of the high plateau in the Central Andes, Bolivia, South America. Tectonics 16:623–649

    Article  Google Scholar 

  • Lamb S, Hoke L, Kennan L, Dewey J (1997) Cenozoic evolution of the Central Andes in Bolivia and Northern Chile. In: Burg JP, Ford M (eds) Orogeny through time. Geol Soc Spec Publ 121, pp 237–264

    Google Scholar 

  • Lucassen F, Becchio R, Harmon R, Kasemann S, Franz G, Trumbull R, Romer RL, Dulski P (2001) Composition and density model of the continental crust in an active continental margin — the Central Andes between 18° and 27° S. Tectonophysics 341:195–223

    Article  Google Scholar 

  • Lüth S, Wigger P (2003) A crustal model along 39° S from a seismic refraction profile ISSA2000. Rev Geol Chile 30(1):83–101

    Google Scholar 

  • Mackwell SJ, Zimmerman ME, Kohlstedt DL (1998) High-temperature deformation of dry diabase with application to tectonics on Venus. J Geophys Res 103:975–984

    Article  Google Scholar 

  • McQuarrie N, De Celles P (2001) Geometry and structural evolution of the Central Andean back-thrust belt, Bolivia. Tectonics 20(5): 669–692

    Article  Google Scholar 

  • Medvedev S, Podladchikov Y, Handy MR, Scheuber E (2006) Controls on the deformation of the Central and Southern Andes (10–35° S): insight from thin-sheet numerical modeling. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 475–494, this volume

    Google Scholar 

  • Moresi LN, Dufour F, Muhlhaus HB (2003) A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. J Comp Phys 184:476–497

    Article  Google Scholar 

  • Oncken O, Hindle D, Kley J, Elger K, Victor P, Schemmann K (2006) Deformation of the central Andean upper plate system — facts, fiction, and constraints for plateau models. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 3–28, this volume

    Google Scholar 

  • Pardo Casas F, Molnar P (1987) Relative motion of the Nazca (Farallon) and South American plates since Late Cretaceous time. Tectonics 6:233–248

    Google Scholar 

  • Peacock S (1996) Thermal and petrologic structure of subduction zones. In: Bebout G, et al. (eds) Subduction, top to bottom. AGU Geophys Monogr Ser 96, Washington DC, pp 119–134

    Google Scholar 

  • Petrunin A, Sobolev SV (2005) What controls thickness of sediments and lithospheric deformation at a pull-apart basin? Geology 34:389–392

    Article  Google Scholar 

  • Poli S, Schmidt MW (2002) Petrology of subducted slabs. Ann Rev Earth Planet Sci 30:207–235

    Article  Google Scholar 

  • Poliakov AN, Cundall PA, Podladchikov YY, Lyakhovsky VA (1993) An explicit inertial method for the simulation of the viscoelastic flow: an evaluation of elastic effects on diapiric flow in two-and three-layers models. In: Stone DB, Runcorn SK (eds) Flow and creep in the Solar System: observations, modelling and theory. Kluwer Academic Publishers, pp 175–195

    Google Scholar 

  • Pope DC, Willett SD (1998) Thermo-mechanical model for crustal thickening in the Central Andes driven by ablative subduction. Geology 26:511–514

    Article  Google Scholar 

  • Ranero CR, Phipps Morgan J, McIntosh K, Relchert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425:367–373

    Article  Google Scholar 

  • Royden LH, Burchfiel BC, King RW, Wang E, Chen Z, Shen F, Liu Y (1997) Surface deformation and lower crustal flow in eastern Tibet. Science 276:788–790

    Article  Google Scholar 

  • Russo R, Silver PG (1996) Cordillera formation, mantle dynamics, and the Wilson cycle. Geology 24:511–514

    Article  Google Scholar 

  • Rybacki E, Dresen G (2000) Dislocation and diffusion creep of synthetic anorthite aggregates. J Geophys Res 105:26017–26036

    Article  Google Scholar 

  • Scheuber E, Bogdanic T, Jensen A, Reutter K-J (1994) Tectonic development of the north Chilean Andes in relation to plate convergence and magmatism since the Jurassic. In: Reutter K-J, Scheuber E, Wigger P (eds) Tectonics of the Southern Central Andes. Springer-Verlag, Berlin Heidelberg New York, pp 121–139

    Google Scholar 

  • Silver PG, Russo RM, Lithgow-Bertelloni C (1998) Coupling of South American and African plate motion and plate deformation. Science 279:60–63

    Article  Google Scholar 

  • Sobolev SV, Babeyko AY (1994) Modeling of mineralogical composition, density and elastic wave velocities in anhydrous magmatic rocks. Survey Geophys 15:515–544

    Article  Google Scholar 

  • Sobolev SV, Babeyko AY (2005) What drives orogeny in the Andes? Geology 33:617–620

    Article  Google Scholar 

  • Sobolev SV, Zeyen H, Stoll G, Werling F, Altherr R, Fuchs K (1996) Upper mantle temperatures from teleseismic tomography of French Massif Central including effects of composition, mineral reactions, anharmonicity, anelasticity and partial melt. Earth Plan Sci Lett 139:147–163

    Article  Google Scholar 

  • Sobolev SV, Petrunin A, Garfunkel Z, Babeyko AY, DESERT Group (2005) Thermo-mechanical model of the Dead Sea transformation. Earth Planet Sci Lett 238:78–95

    Article  Google Scholar 

  • Somoza R (1998) Updated Nazca (Farallon)-South America relative motions during the last 40 My: implications for mountain building in the Central Andean region. J S Am Earth Sci 11:211–215

    Article  Google Scholar 

  • Springer M, Förster A (1998) Heat flow density across the Central Andean subduction zone. Tectonophysics 291:123–139

    Article  Google Scholar 

  • Sulsky D, Zhou SJ, Schreyer HL (1995) Application of a particle-in-cell method to solid mechanics. Comput Phys Commun 87:236–252

    Article  Google Scholar 

  • Tassara A (2005) Interaction between the Nazca and South American plates and formation of the Altiplano-Puna plateau: Review of a flexural analysis along the Andean margin (15°–34° S). Tectonophysics 399:39–57

    Article  Google Scholar 

  • Trumbull RB, Riller U, Oncken O, Scheuber E, Munier K, Hongn F (2006) The time-space distribution of Cenozoic volcanism in the South-Central Andes: a new data compilation and some tectonic implications. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 29–44, this volume

    Google Scholar 

  • Victor P, Oncken O, Glodny J (2004) Uplift of the western Altiplano Plateau: evidence from the Precordillera between 20° S and 21° S, Northern Chile. Tectonics 23: doi 10.1029/2003TC001519

    Google Scholar 

  • Vietor T, Echtler H (2006) Episodic Neogene southward growth of the Andean subduction orogen between 30° S and 40° S — plate motions, mantle flow, climate, and upper-plate structure. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 375–400, this volume

    Google Scholar 

  • von Hunen J, van den Berg AP, Vlaar NJ (2004) Various mechanisms to induce shallow flat subduction: a numerical parameter study. Phys Earth Planet Int 146:179–194

    Article  Google Scholar 

  • Whitman D, Isacks BL, Kay SM (1996) Lithospheric structure and along-strike segmentation of the Central Andean Plateau: seismic Q, magmatism, flexture, topography and tectonics. Tectonophysics 259:29–40

    Article  Google Scholar 

  • Yañez G, Cembrano J (2004) Role of viscous plate coupling in the late Tertiary Andean tectonics. J Geophys Res 109(2):1–21

    Article  Google Scholar 

  • Yuan X, Sobolev SV, Kind R, Oncken O, et al. (2000) Subduction and collision processes in the Central Andes constrained by converted seismic phases. Nature 408:958–961

    Article  Google Scholar 

  • Yuan X, Sobolev SV, Kind R (2002) New data on Moho topography in the Central Andes and their geodynamic implications. Earth Planet Sci Lett 199:389–402

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sobolev, S.V., Babeyko, A.Y., Koulakov, I., Oncken, O. (2006). Mechanism of the Andean Orogeny: Insight from Numerical Modeling. In: Oncken, O., et al. The Andes. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-48684-8_25

Download citation

Publish with us

Policies and ethics