Skip to main content

Programmed Cell Death in Mouse Brain Development

  • Chapter
Mouse Brain Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 30))

Abstract

Among the basic cellular events that shape the developing brain, programmed cell death (also called apoptosis) plays an essential role (Cowan et al. 1984; Oppenheim 1991). Although cell death during the development of the vertebrate nervous system was first described by anatomists of the nineteenth century, a mechanistic understanding of these events started only in the latter half of this century through two lines of research. First, the identification of nerve growth factor (NGF) by R. Levi-Montalcini and colleagues showed that cells died if deprived of trophic molecules and thus established the foundation for the “trophic theory” of neural development. Second, H. R. Horvitz pioneered genetic studies of programmed cell death in the nematode Caenorhabditis elegans and elucidated a genetic pathway involved in this process. Because the targeted disruption of specific genes in the mouse can now be performed, we can test directly whether the same cell death machinery is conserved in mammals. Moreover, the similarity of the organization and development of the central nervous system between the mouse and higher primates makes it an ideal experimental system for understanding the roles of programmed cell death in normal human brain development and congenital malformations. The present chapter focuses on the recent gene targeting studies elucidating the evolutionarily conserved cell death machinery in the context of mouse brain development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JM, Cory S (1998) The Bd-2 protein family: arbiters of cell survival. Science 281: 13221326

    Google Scholar 

  • Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P (1998) Apafl (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94: 727–737

    Article  PubMed  CAS  Google Scholar 

  • Chinnaiyan AM, O’Rourke K, Lane BR, Dixit VM (1997) Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 275: 1122–1126

    Article  PubMed  CAS  Google Scholar 

  • Conradt B, Horvitz HR (1998) The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93: 519–529

    Article  PubMed  CAS  Google Scholar 

  • Cowan WM, Fawcett JW, O’Leary DD, Stanfield BB (1984) Regressive events in neurogenesis. Science 225: 1258–1265

    Article  PubMed  CAS  Google Scholar 

  • Deckwerth TL, Elliott JL, Knudson CM, Johnson EM Jr, Snider WD, Korsmeyer SJ (1996) BAX is required for neuronal death after trophic factor deprivation and during development. Neuron 17: 401–411

    Article  PubMed  CAS  Google Scholar 

  • Dong C, Yang DD, Wysk M, Whitmarsh AJ, Davis RJ, Flavell RA (1998) Defective T cell differentiation in the absence of Jnkl. Science 282: 2092–2095

    Article  PubMed  CAS  Google Scholar 

  • Eksioglu YZ, Scheffer IE, Cardness P, Knoll J, Dimario F, Ramsby G, Berg M, Kamuro K, Berkovic SF, Duyk M, Parisi J, Huttenlocher PR, Walsh CA (1996) Periventricular heterotopia: an X-linked dominant epilepsy locus causing aberrant cerebral cortical development. Neuron 16: 77–87

    Article  PubMed  CAS  Google Scholar 

  • Ellis RE, Horvitz HR (1991) Two C. elegans genes control the programmed deaths of specific cells in the pharynx. Development 112: 591–603

    PubMed  CAS  Google Scholar 

  • Glucksmann A (1951) Cell deaths in normal vertebrate ontogeny. Biol Rev 26: 59–86

    Article  Google Scholar 

  • Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Derijard B, Davis RJ (1996) Selective

    Google Scholar 

  • interaction of JNK protein kinase isoforms with transcription factors. EMBO J 15: 2760–2770 Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS, Elia A, de la Pompa JL

    Google Scholar 

  • Kagi D, Khoo W, Potter J, Yoshida R, Kaufman SA, Lowe SW, Penninger JM, Mak TW (1998) Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94: 339–352

    Article  PubMed  Google Scholar 

  • Hamburger V (1992) History of the discovery of neuronal death in embryos. J Neurobiol23: 1116–1123

    Google Scholar 

  • Hamburger V (1934) The effects of wing bud extirpation on the development of the central nervous system in chick embryos. J Exp Zool 68: 449–494

    Article  Google Scholar 

  • Hamburger V (1939) Motor and sensory hyperplasia following limb-bud transplantations in chick embryos. Physiol Zool 12: 258–84

    Google Scholar 

  • Hengartner MO, Horvitz HR (1992) C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bd-2. Cell 76: 665–676

    Article  Google Scholar 

  • Hengartner MO, Ellis RE, Horvitz HR (1992) Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356: 494–499

    Google Scholar 

  • Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ (1990) Bd-2 is an inner

    Google Scholar 

  • mitochondrial membrane protein that blocks programmed cell death. Nature 348: 334–336 Ip YT, Davis RJ (1998) Signal transduction by the c-Jun N-terminal kinase (JNK)-from

    Google Scholar 

  • inflammation to development. Curr Opin Cell Biol 10:205–219

    Google Scholar 

  • Kallen B (1955) Cell degeneration during normal ontogenesis of the rabbit brain. J Anat 89: 153–161

    PubMed  CAS  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer 26: 239–257

    Article  PubMed  CAS  Google Scholar 

  • Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bd-2 regulation of apoptosis. Science 275: 1132–36

    Article  PubMed  CAS  Google Scholar 

  • Kuan CY, Yang DD, Samanta Roy DR, Davis RJ, Rakic P, Flavell RA (1999) The Jnkl and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22: 667–676

    Article  PubMed  CAS  Google Scholar 

  • Kuida K, Zheng TS, Na S, Kuan CY, Yang D, Karasuyama H, Rakic P, Flavell RA (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384: 368–372

    Article  PubMed  CAS  Google Scholar 

  • Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, Su MSS, Rakic P, Flavell RA (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94: 325–337

    Article  PubMed  CAS  Google Scholar 

  • Lee KS, Schottler F, Collins JL, Lanzino G, Couture D, Rao A, Hiramatsu KI, Goto Y, Hong SC, Caber H, Yamamoto H, Chen ZF, Bertram E, Berr S, Omary R, Scrable H, Jackson T, Goble J, Eisenman L (1997) A genetic animal model of human neocortical heterotopia associated with seizures. J Neurosci 17: 6236–6242

    PubMed  CAS  Google Scholar 

  • Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237: 1154–1162

    Article  PubMed  CAS  Google Scholar 

  • Li P, Nijhawan D, Buduhardjo I, Srinivasula SM, Ahmad M, Almemri ES, Wang X (1997)

    Google Scholar 

  • Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Google Scholar 

  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-extracts: requirement for dATP and cytochrome c. Cell 86: 147–157

    Article  PubMed  CAS  Google Scholar 

  • Martin JH, Mohit AA, Miller CA (1996) Developmental expression in the mouse nervous system of the p493F12 SAP kinase. Brain Res Mol Brain Res 35: 47–57

    Article  PubMed  CAS  Google Scholar 

  • Martinou JC, Dubois-Dauphin M, Staple JK, Rodriguez I, Frankowski H, Missotten M, Albertini

    Google Scholar 

  • Talabot D, Catsicas S, Pietra C, Huarte J (1994) Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13: 1017–1030

    Article  PubMed  Google Scholar 

  • Merry DE, Korsmeyer SJ (1997) Bd-2 gene family in the nervous system. Annu Rev Neurosci 20: 245–267

    Article  PubMed  CAS  Google Scholar 

  • Metzstein MM, Hengartner MO, Tsung N, Ellis RE, Horvitz HR (1996) Transcriptional regulator of programmed cell death encoded by Caenorhabditis elegans gene ces-2. Nature 382: 545–547

    Article  PubMed  CAS  Google Scholar 

  • Metzstein MM, Stanfield GM, Horvitz HR (1998) Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet 14: 410–416

    Article  PubMed  CAS  Google Scholar 

  • Motoyama N, Wang F, Roth KA, Sawa H, Nakayama KI, Nakayama K, Negishi I, Senju S, Zhang

    Google Scholar 

  • Fuiji S, Loh DY (1995) Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267: 1506–1510

    Article  Google Scholar 

  • Oltvai ZO, Milliman CL, Korsemeyer SJ (1993) Bd-2 heterodimerize in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609–19

    Google Scholar 

  • Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14: 453–501

    Article  PubMed  CAS  Google Scholar 

  • Pan G, O’Rouke K, Dixit VM (1998) Caspase-9, Bcl-xL, and Apaf-1 form a ternary complex. J Biol Chem 273: 5841–5845

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1988) Specification of cerebral cortical areas. Science 241: 170–176

    Article  PubMed  CAS  Google Scholar 

  • Shindler KS, Latham CB, Roth KA (1997) Bax deficiency prevents the increased cell death of immature neurons in bcl-x-deficient mice. J Neurosci 17: 3112–3119

    PubMed  CAS  Google Scholar 

  • Spector MS, Desnoyers S, Hoeppner DJ, Hengartner MO (1997) Interaction between the C. elegans cell-death regulators CED-9 and ED-4. Nature 385: 653–656

    Article  PubMed  CAS  Google Scholar 

  • Thomaidou D, Mione MC, Cavanagh JF, Parnavelas JG (1997) Apoptosis and its relation to the cell cycle in the developing cerebral cortex. J Neurosci 17: 1075–1085

    PubMed  CAS  Google Scholar 

  • Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281: 1312–1316

    Article  PubMed  CAS  Google Scholar 

  • Vaux DL, Weissman IL, Kim SK (1992) Prevention of programmed cell death in Caenorhabditis elegans by human bd-2. Science 258: 1955–1957

    Article  PubMed  CAS  Google Scholar 

  • Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ (1993) Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75: 229–240

    Article  PubMed  CAS  Google Scholar 

  • White FA, Keller-Peck CR, Knudson CM, Korsemeyer SJ, Snider WD (1998) Widespread elimination of naturally occurring neuronal death in Bax-deficient mice. J Neurosci 18: 1428–1439

    PubMed  CAS  Google Scholar 

  • Xue D, Shaham S, Horvitz HR (1996) The Caenorhabditis elegans cell-death protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. Genes Dev 10: 1073–1083

    Article  PubMed  CAS  Google Scholar 

  • Yang DD, Kuan CY, Whitmarsh AJ, Rincón M, Zheng TS, Davis RJ, Rakic P, Flavell RA (1997) Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389: 865–870

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Liu X, Bhalla K, Kim N, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bd-2: Release of cytochrome c from mitochondria blocked. Science 275: 1129–1132

    Google Scholar 

  • Yang DD, Conze D, Whitmarsh AJ, Barrett T, Davis RJ, Rincón M, Flavell RA (1998) Differ- entiation of CD4+ T cells to Thl cells requires MAP kinase JNK2. Immunity 9: 575–585

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Kong Y, Yoshida R, Elia AJ, Hakem A, Hakem R, Penninger JM, Mak TW (1998) Apafl is required for mitochondrial pathways of apoptosis and brain development. Cell 94: 739–750

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to the mammalian interleukin-1 beta-converting enzyme. Cell 75: 641–652

    Article  PubMed  CAS  Google Scholar 

  • Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90: 405–413

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuan, CY., Flavell, R.A., Rakic, P. (2000). Programmed Cell Death in Mouse Brain Development. In: Goffinet, A.M., Rakic, P. (eds) Mouse Brain Development. Results and Problems in Cell Differentiation, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48002-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-48002-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53684-7

  • Online ISBN: 978-3-540-48002-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics