Skip to main content

Control of Muscle Size During Embryonic, Fetal, and Adult Life

  • Chapter
Vertebrate Myogenesis

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 38))

Abstract

Size differences of muscles can be found comparing homologous muscles in various species. The biceps brachii muscle of the mouse, for instance, is much smaller than the biceps brachii muscle of a pig or even an elephant. These size differences are mainly caused by differences in the number of muscle cells, meaning that the proliferation rates of the somite-derived muscle cells must be different in these species. In addition to these species-specific differences, muscle sizes vary from one body region to another in a given animal. The musculature in the lower leg is much smaller than it is in the thigh and the back musculature in the thoracic region is much smaller than it is in the lumbar or cervical region. Although the mass of homologous muscles of two differing species may vary by over a 1,000-fold, it is surprising that the sources of the musculature, the somites, do not exhibit such dramatic differences in size. Therefore, muscle mass is determined not by the number of cells in the newly formed somites, but by mechanisms that regulate their proliferation, expansion and differentiation. In this review we have looked at mechanisms that regulate the expansion of the somitic compartment and its derivatives that form the skeletal muscle of the vertebrate body at differing stages in the life of higher vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams GR, McCue SA (1998) Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J Appl Physiol 84: 1716–1722

    PubMed  CAS  Google Scholar 

  • Alison MR, Poulsom R, Jeffery R, Dhillon AP, Quaglia A, Jacob J, Novelli M, Prentice G, Williams J, Wright NA (2000) Hepatocytes from non-hepatic adult stem cells. Nature 406: 257

    PubMed  CAS  Google Scholar 

  • Amthor H, Christ B, Weil M, Patel K (1998) The importance of timing differentiation during limb muscle development. Curr Biol 8: 642–652

    PubMed  CAS  Google Scholar 

  • Amthor H, Christ B, Patel K (1999) A molecular mechanism enabling continuous embryonic muscle growth–a balance between proliferation and differentiation. Development 126: 1041–1053

    PubMed  CAS  Google Scholar 

  • Anderson JE, Mitchell CM, McGeachie JK, Grounds MD (1995) The time course of basic fibroblast growth factor expression in crush-injured skeletal muscles of SJL/J and BALB/c mice. Exp Cell Res 216: 325–334

    PubMed  CAS  Google Scholar 

  • Ashby PR, Wilson SJ, Harris AJ (1993) Formation of primary and secondary myotubes in aneural muscles in the mouse mutant peroneal muscular atrophy. Dev Biol 156: 519–528

    PubMed  CAS  Google Scholar 

  • Awede B, Thissen J, Gailly P, Lebacq J (1999) Regulation of IGF-I, IGFBP-4 and IGFBP-5 gene expression by loading in mouse skeletal muscle. FEBS Lett 461: 263–267

    PubMed  CAS  Google Scholar 

  • Barnard W, Bower J, Brown MA, Murphy M, Austin L (1994) Leukemia inhibitory factor (LIF) infusion stimulates skeletal muscle regeneration after injury: injured muscle express lif mRNA. J Neurol Sci 123: 108–113

    PubMed  CAS  Google Scholar 

  • Barton-Davis E, Shoturna DI, Musaro A, Rosenthal N, Sweeney HL (1998) Viral mediated expression of insulin-like growth factor blocks the aging-related loss of skeletal muscle function. Proc Natl Acad Sci USA 95: 15603–15607

    PubMed  CAS  Google Scholar 

  • Bittner RE, Schäfer C, Weipoltshammer K, Ivanova S, Streubel B, Hauser E, Freilinger M, Höger H, Elbe-Bürger A, Wachtler F (1999) Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat Embryol 199: 391–396

    PubMed  CAS  Google Scholar 

  • Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C (1995) Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376: 768–771

    PubMed  CAS  Google Scholar 

  • Bonner PH, Hauschka SD (1974) Clonal analysis of vertebrate myogenesis. I. Early developmental events in the chick limb. Dev Biol 37: 317–328

    Google Scholar 

  • Borycki AG, Mendham L, Emerson CP Jr (1998) Control of somite patterning by Sonic hedgehog and its down stream signal response genes. Development 125: 770–790

    Google Scholar 

  • Borycki AG, Brown AMC, Emerson CP (2000) Shh and Wnt signaling pathways converge to control Gli gene activation in avian somites. Development 127: 2075–2087

    PubMed  CAS  Google Scholar 

  • Brand-Saberi B, Müller TS, Wilting J, Christ B, Birchmeier C (1996) Scatter Factor/Hepatocyte Growth Factor ( SF/HGF) induces emigration of myogenic cells at interlimb level in vivo. Dev Biol 179: 303–308

    Google Scholar 

  • Brohmann H, Jagla K, Birchmeier C (2000) The role of Lbxl in migration of muscle precursor cells. Development 127: 437–445

    PubMed  CAS  Google Scholar 

  • Capdevila J, Tabin C, Johnson RL (1998) Control of dorsoventral somite patterning by Wnt-1 and b-catenin. Dev Biol 193: 182–194

    PubMed  CAS  Google Scholar 

  • Cherel Y, Hurtrel M, Gardahaut MF, Merly F, Magras-Resch C, Fontaine-Perus J, Wyers M (1994) Comparison of postnatal development of anterior latissimus dorsi (ALD) muscle in heavy- and light-weight strains of turkey (Meleagris gallopavo). Growth Dev Aging 279: 1528–1530

    Google Scholar 

  • Christ B, Ordahl CP (1995) Early stages of somite development. Anat Embryol 191:381–396 Christ B, Jacob HJ, Jacob M (1977) Experimental analysis of the origin of the wing musculature in avian embryos. Anat Embryol 150: 171–186

    Google Scholar 

  • Christ B, Jacob M, Jacob HJ (1983) On the origin and development of the ventroabdominal muscles in the avian embryo. Anat Embryol 166: 87–101

    PubMed  CAS  Google Scholar 

  • Christ B,Amthor H, Huang R, Wagner J, Patel K (2001) The origin and fate of somites. In: Sanders EJ, Lash JW, Ordahl CP (eds) Life and behavioural sciences, vol 329. NATO Science Series, Series 1. IOS Press, Amsterdam, pp 124–131

    Google Scholar 

  • Cihâk R, Gutmann E, Hanzlikovâ V (1970) Involution and hormone-induced persistence of the M. sphincter (levator) and in female rats. J Anat 106: 93–110

    PubMed  Google Scholar 

  • Clegg CH, Linkhart TA, Olwin BB, Hauschka SD (1987) Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor. J Cell Biol 105: 949–956

    PubMed  CAS  Google Scholar 

  • Coleman ME, DeMayo F, Yin KC, Lee HM, Geske R, Montgomery C, Schwartz RJ (1995) Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem 270: 12109–12116

    PubMed  CAS  Google Scholar 

  • Condon K, Silberstein L, Blau HM, Thompson WJ (1990) Development of muscle fiber types in the prenatal rat hindlimb. Dev Biol 138: 256–274

    PubMed  CAS  Google Scholar 

  • Cossu G, Mavilio F (2000) Myogenic stem cells for the therapy of primary myopathies: wishful thinking or therapeutic perspective? J Clin Invest 105: 1669–1974

    PubMed  CAS  Google Scholar 

  • Crow MT, Stockdale FE (1984) Myosin isoforms and the cellular basis of skeletal muscle development. Expl Biol Med 9: 165–174

    CAS  Google Scholar 

  • Crow MT, Stockdale FE (1986a) The developmental program of fast myosin heavy chain expression in avian skeletal muscles. Dev Biol 118: 333–342

    PubMed  CAS  Google Scholar 

  • Crow MT, Stockdale FE (1986b) Myosin expression and specialization among the earliest muscle fibers of the developing avian limb. Dev Biol 113: 238–254

    PubMed  CAS  Google Scholar 

  • Cusella-De Angelis MG, Molinari S, Le Donne A, Voletta M, Vivarelli E, Bouche M, Molinaro M, Ferrari S, Cossu G (1994) Differential response of embryonic and fetal myoblasts to TGF beta: a possible regulatory mechanism of skeletal muscle histogenesis. Development 120: 925–933

    Google Scholar 

  • DeHamer MK, Guevara JL, Hannon K, Olwin BB, Calof AL (1994) Genesis of olfactory receptor neurons in vitro: regulation of progenitor cell divisions by fibroblast growth factors. Neuron 13: 1083–1097

    PubMed  CAS  Google Scholar 

  • de Lapeyriere O, O11edorff V, Planche J, Ott MO, Pizette S, Coulier F, Birnbaum D (1993) Expression of FGF6 gene is restricted to developing skeletal muscle in the mouse embryo. Development 118: 601–611

    Google Scholar 

  • Delfini M-C, Hirsinger E, Pourquié O, Duprez D (2000) Delta 1-activated Notch inhibits muscle differentiation without affecting Myf-5 and Pax3 expression in chick limb myogenesis. Development 127: 5213–5224

    PubMed  CAS  Google Scholar 

  • Denetclaw WF, Ordahl CP (2000) The growth of the dermomyotome and formation of early myotome lineages in thoracolumbar somites of chicken embryos. Development 127:893–905

    Google Scholar 

  • Denetclaw WJ Jr, Christ B, Ordahl CP (1997) Location and growth of epaxial myotome precursor cells. Development 124: 1601–1610

    Google Scholar 

  • Dietrich S, Schubert FR, Healy C, Sharpe PT, Lumsden A (1998) Specification of the hypaxial musculature. Development 125: 2235–2249

    PubMed  CAS  Google Scholar 

  • DiMario JX, Stockdale FE (1997) Both myoblast lineage and innervation determine fiber type and are required for expression of the slow myosin heavy chain 2 gene. Dev Biol 188:167–180

    Google Scholar 

  • Dono R, Zeller R (1994) Cell-type-specific nuclear translocation of fibroblast growth factor-2 isoforms during chicken kidney and limb morphogenesis. Dev Biol 163:316–330

    Google Scholar 

  • Dunglison GF, Scotting PJ, Wigmore PM (1999) Rat embryonic myoblasts are restricted to forming primary fibers while later myogenic populations are pluripotent. Mech Dev 87:11–19

    Google Scholar 

  • Dunn SE, Burns JL, Michel RN (1999) Calcineurin is required for skeletal muscle hypertrophy. J Biol Chem 274: 21908–21912

    PubMed  CAS  Google Scholar 

  • Düsterhoft S, Dieterle R, Pette D (1992) Myosin isoforms in rat satellite cell cultures of different origin. Eur J Cell Biol 57: 16

    Google Scholar 

  • Duxson MJ (1992) The relationship of nerve to myoblasts and newly-formed secondary myotubes in the fourth lumbrical muscle of the rat fetus. J Neurocytol 21: 574–588

    PubMed  CAS  Google Scholar 

  • Duxson MJ, Sheard PW (1995) Formation of new myotubes occurs exclusively at the multiple innervation zones of an embryonic large muscle. Dev Dyn 204: 391–405

    PubMed  CAS  Google Scholar 

  • Duxson MJ, Usson Y (1989) Cellular insertion of primary and secondary myotubes in embryonic rat muscles. Development 107: 243–251

    PubMed  CAS  Google Scholar 

  • Duxson MJ, Usson Y, Harris AJ (1989) The origin of secondary myotubes in mammalian skeletal muscles: ultrastructural studies. Development 107: 743–750

    PubMed  CAS  Google Scholar 

  • Evans D, Baillie H, Caswell A, Wigmore P (1994) During fetal muscle development, clones of cells contribute to both primary and secondary fibers. Dev Biol 162: 348–353

    PubMed  CAS  Google Scholar 

  • Fan C-M, Tessier-Lavigne M (1994) Patterning of mammalian somites by surface ectoderm and notochord: evidence for sclerotome induction by a hedgehog homolog. Cell 79: 1175–1186

    PubMed  CAS  Google Scholar 

  • Feldman JL, Stockdale FE (1991) Skeletal muscle satellite cell diversity: satellite cells form fibers

    Google Scholar 

  • of different types in cell culture. Dev Biol 143:320–334

    Google Scholar 

  • Feldman JF, Stockdale FE (1992) Temporal appearance of satellite cells during myogenesis. Dev Biol 153: 217–226

    PubMed  CAS  Google Scholar 

  • Fernandes JJ, Keshishian H (1998) Nerve-muscle interactions during flight muscle development in Drosophila. Development 125: 1769–1779

    PubMed  CAS  Google Scholar 

  • Ferrari G, Cusela-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998)

    Google Scholar 

  • Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1529–1530 Flanagan-Steet H (2000) Loss of FGF receptor 1 signaling reduces skeletal muscle mass and disrupts myofiber organization in the developing limb. Dev Biol 218: 21–37

    Google Scholar 

  • Florini JR, Ewton DZ, Coolican SA (1996) Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev 17: 481–517

    PubMed  CAS  Google Scholar 

  • Floss T, Arnold HH, Braun T (1997) A role for FGF-6 in skeletal muscle regeneration. Genes Dev 11: 2040–2051

    PubMed  CAS  Google Scholar 

  • Fournier M, Lewis MI (2000) Influences of IGF-I gene disruption on the cellular profile of the diaphragm. Am J Physiol Endocrinol Metab 278: E707–715

    PubMed  CAS  Google Scholar 

  • Franz T, Kothary R, Surani MAH, Halata Z, Grim M (1993) The splotch mutation interferes with muscle development in the limbs. Anat Embryol 187: 153–160

    PubMed  CAS  Google Scholar 

  • Fredette BJ, Landmesser LT (1991) A reevaluation of the role of innervation in primary and secondary myogenesis in developing chick muscle. Dev Biol 143: 19–35

    PubMed  CAS  Google Scholar 

  • Gal-Levi R, Leshem Y, Aoki S, Nakamura T, Halevy 0 (1998) Hepatocyte growth factor plays a dual role in regulating skeletal muscle satellite cell proliferation and differentiation. Biochim Biophys Acta 1402: 39–51

    Google Scholar 

  • Gerrard DE, Okamura CS, Ranalletta MA, Grant AL (1998) Developmental expression and location of IGF-I and IGF-II mRNA and protein in skeletal muscle. J Anim Sci 76:1004–1011

    Google Scholar 

  • location of IGF-I and IGF-II mRNA and protein in skeletal muscle. J Anim Sci 76:1004–1011 Goldspink G (1972) Post embryonic growth and differentiation of striated muscle: In: Bourne GH ed) The structure and function of muscle, vol 1. Academic Press, New York, pp 179–236

    Google Scholar 

  • Goulding MD, Lumsden A, Paquett AJ (1994) Regulation of Pax-3 expression in the dermomy- otome and its role in muscle development. Development 120:957–971

    Google Scholar 

  • Graham A, Francis-West P, Brickell P, Lumsden A (1994) The signaling molecule BMP4 mediates apoptosis in the rhombencephalic neural crest. Nature 372: 684–686

    PubMed  CAS  Google Scholar 

  • Grim M (1977) Die Myotubenrückbildung in den Muskelanlagen der menschlichen Hand. Verh Anat Ges 71: 1239–1243

    PubMed  Google Scholar 

  • Grim M (1978) Acid phosphatase activity in normal and sarcolytic myotubes in muscle anlagen of the human hand. Histochemistry 56: 307–316

    PubMed  CAS  Google Scholar 

  • Gross M, Moran-Rivard L, Velasquez T, Nakatsu MN, Jagla K (2000) Lbxl is required for muscle precursor migration along a lateral pathway into the limb. Development 127: 413–424

    PubMed  CAS  Google Scholar 

  • Grounds MD, Garrett KL, Lai MC, Wright WE, Beilharz MW (1992) Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and myogenin probes. Cell Tissue Res 267: 99–104

    PubMed  CAS  Google Scholar 

  • Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401: 390–394

    PubMed  CAS  Google Scholar 

  • Hacker A, Guthrie S (1998) A distinct developmental programme for the cranial paraxial mesoderm in the chick embryo. Development 125: 3461–3472

    PubMed  CAS  Google Scholar 

  • Han JK, Martin GR (1993) Embryonic expression of Fgf-6 is restricted to the skeletal muscle lineage. Dev Biol 158: 549–554

    PubMed  CAS  Google Scholar 

  • Hannon K, Kudla AJ, McAvoy MJ, Clase KL, Olwin BB (1996) Differentially expressed fibroblast growth factors regulate skeletal muscle development through autocrine and paracrine mechanisms. J Cell Biol 132: 1161–1159

    Google Scholar 

  • Harris AJ, Duxson MJ, Fitzsimons RB, Rieger F (1989a) Myonuclear birth dates distinguish the origins of primary and secondary myotubes in embryonic mammalian skeletal muscles. Development 107: 771–784

    PubMed  CAS  Google Scholar 

  • Harris AJ, Fitzsimons RB, McEwan JC (1989b) Neural control of the sequence of expression of myosin heavy chain isoforms in fetal mammalian muscles. Development 107: 751–769

    PubMed  CAS  Google Scholar 

  • Hartley RS, Bandmann E, Yablonka-Reuveni Z (1992) Skeletal muscle satellite cells appear during late chicken embryogenesis. Dev Biol 153: 206–216

    PubMed  CAS  Google Scholar 

  • Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5: 309–313

    PubMed  CAS  Google Scholar 

  • Huang R, Christ B (2000) Origin of the epaxial and hypaxial myotome in avian embryos. Anat Embryol 202: 369–374

    PubMed  CAS  Google Scholar 

  • Hughes DS, Ontell M (1992) Morphometric analysis of the developing, murine aneural soleus muscle. Dev Dyn 193: 175–184

    PubMed  CAS  Google Scholar 

  • Itoh N, Mima T, Mikawa T (1996) Loss of fibroblast growth factors receptors is necessary for terminal differentiation of embryonic limb muscle. Development 122: 291–300

    PubMed  CAS  Google Scholar 

  • Jackson KA, Mi T, Goodell MA (1999) Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci USA 961: 4482–4486

    Google Scholar 

  • Joseph-Silverstein J, Consigli SA, Lyser KM, Ver Pault C (1989) Basic fibroblast growth factor in he chick embryo: immunolocalization to striated muscle cells and their precursors. J Cell Biol 108: 2459–2466

    PubMed  CAS  Google Scholar 

  • Kadi F, Thornell LE (2000) Concomitant increases in myonuclear and satellite cell content in female trapezius muscle following strength training. Histochem Cell Biol 113:99–103

    PubMed  CAS  Google Scholar 

  • Kennedy JM, Eisenberg BR, Reid SK, Sweeney LJ, Zak R (1988) Nascent muscle fiber appearance in overloaded chicken slow-tonic muscle. Am J Anat 181:203–215

    PubMed  CAS  Google Scholar 

  • Marcelle C, Stark MR, Bronner-Fraser M (1997) Coordinate action of BMPs, Wnts, Shh and Noggin mediate patterning of the dorsal somite. Development 124: 3955–3963

    Google Scholar 

  • Marcucio RS, Noden DM (1999) Myotube heterogeneity in developing chick craniofacial skeletal muscles. Dev Dyn 214: 178–194

    PubMed  CAS  Google Scholar 

  • Mason I, Fuller-Pace F, Smith R, Dickson C (1994) FGF-7 (keratinocyte growth factor) expression during mouse development suggests roles in myogenesis, forebrain regionalization and epithelial-mesenchymal interactions. Mech Dev 45: 15–30

    PubMed  CAS  Google Scholar 

  • McClearn D, Medville R, Noden D (1995) Muscle cell death during he development of head and neck muscles in the chick embryo. Dev Dyn 202: 365–377

    PubMed  CAS  Google Scholar 

  • McLennan IS (1983) The development of the pattern of innervation in chicken hindlimb muscles: evidence for specification of nerve-muscle connections. Dev Biol 97: 229–238

    PubMed  CAS  Google Scholar 

  • McLennan IS, Poussart Y, Koishi K (2000) Development of skeletal muscles in transforming growth factor-beta 1 ( TGF-betal) null-mutant mice. Dev Dyn 217: 250–256

    Google Scholar 

  • McPherron AC, Lee SJ (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 94: 12457–12461

    PubMed  CAS  Google Scholar 

  • McPherron AC, Lawler Am, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387: 83–90

    PubMed  CAS  Google Scholar 

  • Miller JB, Stockdale FE (1986a) Developmental origins of skeletal muscle fibers: clonal analysis of myogenic cell lineages based on fast and slow myosin heavy chain expression. Proc Natl Acad Sci USA 83: 3860–3864

    PubMed  CAS  Google Scholar 

  • Miller JB, Stockdale FE (1986b) Developmental regulation of the multiple myogenic cell lineages of the avian embryo. J Cell Biol 103: 2197–2208

    PubMed  CAS  Google Scholar 

  • Mitchell CA, McGeachie JK, Grounds MD (1996) The exogenous administration of basic fibroblast growth factor to regenerating skeletal muscle in mice does not enhance the process of regeneration. Growth Factors 13: 37–55

    PubMed  CAS  Google Scholar 

  • Mitchell P, Steenstrup T, Hannon K (1999) Expression of fibroblast growth factor family during postnatal skeletal muscle hypertrophy. J Appl Physiol 86: 313–319

    PubMed  CAS  Google Scholar 

  • Münsterberg AE, Kitajewski J, Bumcrot DA, McMahon AP, Lassar AB (1995) Combinatorial signaling by Sonic hedgehog and Wnt family members induces myogenic bHLH gene expression in the somite. Genes Dev 9: 2911–2922

    PubMed  Google Scholar 

  • Musaro A, McCullagh KJ, Naya, FJ, Olson EN, Rosenthal N (1999) IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature 400: 581–585

    PubMed  CAS  Google Scholar 

  • Naya FJ, Mercer B, Shelton J, Richardson JA, Williams RS, Olson EN (2000) Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J Biol Chem 275: 45454548

    Google Scholar 

  • Nishikawa A, Hayashi H (1994) Isoform transition of contractile proteins related to muscle remodeling with an axial gradient metamorphosis in Xenopus leavis. Dev Biol 165: 86–94

    PubMed  CAS  Google Scholar 

  • Nishikawa A, Hayashi H (1995) Spatial, temporal and hormonal regulation of programmed muscle cell death during metamorphosis of the frog Xenopus laevis. Differentiation 59: 207–214

    PubMed  CAS  Google Scholar 

  • Niswander L, Martin G (1992) Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114: 755–768

    PubMed  CAS  Google Scholar 

  • Olson EN, Williams RS (2000) Remodeling muscles with calcineurin. Bioessays 22:510–519 Olson EN, Sternberg E, Hu JS, Spizz G, Wilcox C (1986) Regulation of myogenic differentiation by type beta transforming growth factor. J Cell Biol 103: 1799–1805

    Google Scholar 

  • Olwin BB, Arthur K, Hannon K, Hein P, McFall A, Riley B, Szebenyi G, Zhou Z, Zuber ME, Rapraeger AC (1994a) Role of FGFs in skeletal muscle and limb development. Mol Reprod Dev 39: 90–101

    PubMed  CAS  Google Scholar 

  • Olwin BB, Hannon K, Kudla Al (1994b) Are fibroblast growth factors regulators of myogenesis in vivo? Prog Growth Factor Res 5: 145–158

    PubMed  CAS  Google Scholar 

  • Ontell M, Kozeka K (1984) Organogenesis of the mouse extensor digitorum longus muscle: a quantitative study. Am J Anat 171: 149–161

    PubMed  CAS  Google Scholar 

  • Ontell M, Hughes D, Bourke D (1988) Morphometric analysis of the developing mouse soleus muscle. Am J Anat 181: 279–288

    PubMed  CAS  Google Scholar 

  • Ontell M, Ontell MP, Sopper MM, Mallonga R, Lyons G, Buckingham M (1993) Contractile protein gene expression in primary myotubes of embryonic mouse hindlimb muscles. Development 117: 1435–1444

    PubMed  CAS  Google Scholar 

  • Ordahl CP, Le Douarin NM (1992) Two myogenic lineages within the developing somite. Development 114: 339–353

    PubMed  CAS  Google Scholar 

  • Parrish EP, Cifuentes-Diaz C, Li ZL, Vicart P, Pulin D, Dreyfus PA, Peschanski M, Harris AJ, Garcia L (1996) Targeting widespread sites of damage in dystrophic muscle: engrafted macrophages as potential shuttles. Gene Ther 3: 13–20

    PubMed  CAS  Google Scholar 

  • Phillips WD, Bennett MR (1984) Differentiation of fiber types in wing muscles during embryonic development: effect of neural tube removal. Dev Biol 106: 457–468

    PubMed  CAS  Google Scholar 

  • Pin CL, Merrifield PA (1993) Embryonic and fetal rat myoblasts express different phenotypes following differentiation in vitro. Dev Genet 14: 356–368

    PubMed  CAS  Google Scholar 

  • Pirskanen A, Kiefer JC, Hauschka SD (2000) IGFs, insulin, Shh, bFGF, and TGF-betal interact synergistically to promote somite myogenesis in vitro. Dev Biol 224: 189–203

    Google Scholar 

  • Ross JJ, Duxson MJ, Harris AJ (1987a) Formation of primary and secondary myotubes in rat lumbrical muscles. Development 100: 383–394

    PubMed  CAS  Google Scholar 

  • Ross JJ, Duxson MJ, Harris, AJ (1987b) Neural determination of muscle fiber numbers in embryonic rat lumbrical muscles. Development 100: 395–409

    PubMed  CAS  Google Scholar 

  • Scaal M, Bonafede A, Dathe V, Sachs M, Cann G, Christ B, Brand-Saberi B (1999) SF/HGF is amediator between limb patterning and muscle development. Development 126:4885–4893

    Google Scholar 

  • Schmidt C, Christ B, Patel K, Brand-Saberi B (1998) Experimental induction of BMP-4 expression leads to apoptosis in the paraxial and lateral plate mesoderm. Dev Biol 202:253–263

    Google Scholar 

  • Seale P, Rudnicki MA (2000) A new look at the origin, function and “stem-cell” status of muscle satellite cells. Dev Biol 218: 115–124

    PubMed  CAS  Google Scholar 

  • Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102: 777–786

    PubMed  CAS  Google Scholar 

  • Seed J, Olwin BB, Hauschka SD (1988) Fibroblast growth factor levels in the whole embryo and limb bud during chick development. Dev Biol 128: 50–57

    PubMed  CAS  Google Scholar 

  • Semsarian C, Wu MJ, Ju YK, Marciniec T, Yeoh T, Allen DG, Harvey RP, Graham RM (1999a) Skeletal muscle hypertrophy is mediated by a Ca’-dependent calcineurin signaling pathway. Nature 400: 576–581

    PubMed  CAS  Google Scholar 

  • Semsarian C, Sutrave P, Richmond DR, Graham RM (1999b) Insulin-like growth factor ( IGF-I) induces myotube hypertrophy associated with an increase in anaerobic glycolysis in a clonal skeletal-muscle cell model. Biochem J 339: 443–451

    Google Scholar 

  • Sheard PW, Duxson MJ, Harris AJ (1991) Neuromuscular transmission to identified primary and secondary myotubes: a reevaluation of polyneuronal innervation patterns in rat embryos. Dev Biol 148: 459–472

    PubMed  CAS  Google Scholar 

  • Stockdale FE (1992) Myogenic cell lineages. Dev Biol 154: 284–298

    PubMed  CAS  Google Scholar 

  • Stockdale FE (1997) Mechanisms of formation of muscle fiber types. Cell Struct Funct 22:37–43 Stockdale FE, Holtzer H (1961) DNA synthesis and myogenesis. Exp Cell Res 24: 508–520

    Google Scholar 

  • Svagr V, Grim M, Jacob HJ (1995) Zur Kontrolle der Muskelrückbildung während der Entwicklung. Vers Anat Ges Graz 177: 120–121

    Google Scholar 

  • Swatland HJ, Kieffer NM (1974) Fetal development of the double muscled condition in cattle. J Anim Sci 38: 752–757

    PubMed  CAS  Google Scholar 

  • Tajbakhsh S, Borello U, Vivarelli E, Kelly R, Papkoff J, Duprez D, Buckingham M, Cossu G (1998) Differential activation of MyfS and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of MyfS. Development 125: 4155–4162

    PubMed  CAS  Google Scholar 

  • Tatsumi R, Anderson JE, Nevoret CJ, Halevy 0, Allen RE (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194: 114–128

    PubMed  CAS  Google Scholar 

  • Templeton TJ, Hauschka SD (1992) FGF-mediated aspects of skeletal muscle growth and differentiation are controlled by a high affinity receptor, FGFR1. Dev Biol 154: 169–181

    PubMed  CAS  Google Scholar 

  • Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275: 40235–40243

    PubMed  CAS  Google Scholar 

  • Wagner J, Schmidt C, Nikovits W, Christ B (2000) Compartmentalization of the somite and myo- genesis in chick embryos are influenced by Wnt expression. Dev Biol 228: 86–94

    PubMed  CAS  Google Scholar 

  • Weatherby AH, Gill HS (1985) Dynamics of increase in muscle fibres in relation to size and growth. Experimentia 41: 353–354

    Google Scholar 

  • Weber R (1969) Tissue involution and lysosomal enzymes during anuran metamorphosis in biology and pathology. In: Dingle JT, Fell HG (eds) Lysosomes in biology and pathology. North Holland, Amsterdam, pp 437–446

    Google Scholar 

  • Wilson SJ, Harris AJ (1993) Formation of myotubes in aneural rat muscles. Dev Biol 156:509–518 Wu H, Naya FJ, McKinsey TA, Mercer B, Shelton JM, Chin ER, Simard AR, Michel RN, Bassel-Duby

    Google Scholar 

  • R, Olson EN (2000) MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J 19:1963–1973

    Google Scholar 

  • Zhang M, McLennan IS (1995) During secondary myotube formation, primary myotubes preferentially absorb new nuclei at their ends. Dev Dyn 204: 168–177

    PubMed  CAS  Google Scholar 

  • Zhu X, Hadhazy M, Wehling M, Tidball JG, McNally EM (2000) Dominant negative myostatin produces hypertrophy without hyperplasia in muscle. FEBS Lett 474: 71–75

    PubMed  CAS  Google Scholar 

  • Zimmerman AM, Lowery MS (1999) Hyperplastic development and hypertrophic growth of muscle fibers in the white seabass (Atractoscion nobilis). J Exp Zool 284: 299–308

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Patel, K., Christ, B., Stockdale, F.E. (2002). Control of Muscle Size During Embryonic, Fetal, and Adult Life. In: Brand-Saberi, B. (eds) Vertebrate Myogenesis. Results and Problems in Cell Differentiation, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45686-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45686-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07735-7

  • Online ISBN: 978-3-540-45686-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics