Skip to main content

Global Change and Mycorrhizal Fungi

  • Chapter
Mycorrhizal Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 157))

Abstract

Mycorrhizae, due to their key position at the plant-soil interface, are important to consider in the study of ecosystem impacts of global changes. Human-induced changes in the earth’s environment are clearly multi-factorial. Examples of important factors are: elevated concentrations of atmospheric gases (for example carbon dioxide or ozone), increased input of nutrients into ecosystems by atmospheric deposition (for example nitrogen), climate change (including altered precipitation and temperature regimes), invasive species, and increased UV-radiation. All of these components of future or present global changes can have positive or negative impacts on mycorrhizal associations. However, a more fundamental distinction has to be made between these factors, paying tribute to the fact that in the mycorrhizal symbiosis we are dealing with two classes of organisms with partially independent biology. There are those factors that directly affect only the host plant (e.g., carbon fixation), and that only have indirect effects on mycorrhizal fungi (mycobionts) via altered carbon allocation from the host. Examples include atmospheric changes, against which soil serves largely as a buffer. Other factors can (in addition) directly affect the mycobionts, for example warming or altered precipitation. This distinction is crucial for a mechanistic understanding of the impact of global change factors, and for experimental approaches. Global change factors rarely occur in isolation. The complexity of regional combinations of global change factors further highlights the need for mechanistic studies, since direct experimental exploration of a large number of scenarios would be virtually impossible. Finally, processes and patterns at larger temporal and spatial scales have to be considered in an assessment of global change impacts on mycorrhiza. Most experiments only allow access to short-term responses, while longer-term responses are really relevant. Possible approaches include the use of natural experiments, for example, CO2 springs. Large-scale processes such as shifts in the global distribution of plant communities (or their regional extinction) due to climate change would affect mycorrhiza, for example, alter the current distribution of mycorrhizal types on the globe. With potential impacts on host biodiversity, mycobiont species diversity may also be impacted at regional scales. In addition, changes in the mycorrhizal fungal community that are independent of changes in the plant community may be one of the least-understood, but potentially most important, mycorrhizal responses to global change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrios GN (1997) Plant pathology. 4th edn. Academic Press, San Diego

    Google Scholar 

  • Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory Mycology. 4th edn. Wiley, New York

    Google Scholar 

  • Allen EB, Allen MF (1986) Water relations of xeric grasses in the field: Interactions of mycorrhiza and competition. New Phytol 104: 559–571

    Google Scholar 

  • Allen EB, Allen MF, Helm DJ, Trappe JM, Molina R, Rincon E (1995) Patterns and regulation of arbuscular and ectomycorrhizal plant and fungal diversity. Plant Soil 170: 47–62

    Article  CAS  Google Scholar 

  • Allen MF (1983) Formation of vesicular-arbuscular mycorrhizae in Atriplex gardneri (Chenopodiaceae): seasonal response in a cold desert. Mycologia 75: 773–776

    Article  Google Scholar 

  • Allen MF (1991) The ecology of mycorrhiza. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Allen MF, Smith WK, Moore TS Jr, Christensen M (1981) Comparative water relations and photosynthesis of mycorrhizal and nonmycorrhizal Bouteloua gracilis H.B.K. Lag ex Steud. New Phytol 88: 683–693

    Google Scholar 

  • Allen MF, Moore TS Jr, Christensen M (1982) Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhiza II. Altered levels of gibberellin-like substances and abscisic acid in the host plant. Can J Bot 60: 468–471

    Google Scholar 

  • Allen MF, Allen EB, West NB (1987) Influence of parasitic and mutualistic fungi on Artemisia tridentata during high precipitation years. Bull Torrey Bot Club 114: 272–279

    Article  Google Scholar 

  • Allen MF, Richards JH, Busso CA (1989) Influence of clipping and water status on vesicular-arbuscular mycorrhiza of two semiarid tussock grasses. Biol Fertil Soils 8: 285–289

    Article  Google Scholar 

  • Allen MF, Morris SJ, Edwards F, Allen EB (1995) Microbe-plant interactions in Mediterranean-type habitats: shifts in fungal symbiotic and saprophytic functioning in response to global change. In: Moreno JM, Oechel WC (eds) Global change and Mediterranean-type ecosystems. Ecological studies 117. Springer, Berlin Heidelberg New York, pp 287–305

    Chapter  Google Scholar 

  • Ames RN, Reid CPP, Porter LK, Cambardella C (1983) Hyphal uptake and transport of nitrogen from two 15N-labeled sources by Glomus mosseae, a vesicular arbuscular mycorrhizal fungus. New Phytol 95: 381–396

    Article  Google Scholar 

  • Amthor JS (1995) Terrestrial higher-plant responses to increasing atmospheric [CO2] in relation to the global carbon cycle. Global Change Biol 1: 243–274

    Article  Google Scholar 

  • Andersen CP, Rygiewicz PT (1995) Allocation of carbon in mycorrhizal Pinus ponderosa seedlings exposed to ozone. New Phytol 131: 471–480

    Article  CAS  Google Scholar 

  • Anderson JB, Kohn LM (1998) Genotyping, gene genealogies and genomics bring fungal population genetics above ground. Trends Ecol Evol 13: 444–449

    Article  PubMed  CAS  Google Scholar 

  • Angers DA, Mehuys GR (1993) Aggregate stability to water. In: Carter MR (ed) Soil sampling and methods of analysis. Lewis Publishers, Boca Raton, pp 651–658

    Google Scholar 

  • Arnebrant K (1994) Nitrogen amendments reduce the growth of extramatrical ectomycorrhizal mycelium. Mycorrhiza 5: 7–15

    Article  CAS  Google Scholar 

  • Arnebrant K, Soderstrom B (1992) Effects of different fertilizer treatments on ectomycorrhizal colonization potential in two Scots Pine forests in Sweden. For Ecol Manage 53: 77–89

    Article  Google Scholar 

  • Arnolds E (1988) The changing macromycete flora in the Netherlands. Trans Br Mycol Soc 90: 391–406

    Article  Google Scholar 

  • Arnolds E (1991) Decline of ectomycorrhizal fungi in Europe. Agricult Ecosyst Environ 35: 209–244

    Article  Google Scholar 

  • Auge R (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11: 3–42

    Article  Google Scholar 

  • Baldauf SL, Palmer JD (1993) Animals and fungi are each other’s closest relatives: con- gruent evidence from multiple proteins. Proc Natl Acad Sci USA 90: 11558–11562

    Article  PubMed  CAS  Google Scholar 

  • Barber VA, Juday GP, Finney BP (2000) Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405: 668–673

    Article  PubMed  CAS  Google Scholar 

  • Bazzaz FA (1990) The response of natural ecosystems to the rising global CO2 levels. Annu Rev Ecol Syst 21: 167–196

    Article  Google Scholar 

  • Bever JD (1994) Feedback between plants and their soil communities in an old field community. Ecology 75: 1965–1977

    Article  Google Scholar 

  • Bloom AJ, Chapin FS III,, Mooney HA (1985) Resource limitation in plants–an economic analogy. Annu Rev Ecol Syst 16: 363–393

    Google Scholar 

  • Bonello P, Heller W, Sandermann H (1993) Ozone effects on root disease susceptibility and defense responses in mycorrhizal and nonmycorrhizal seedlings of Scots Pine (Pinus sylvestris L). New Phytol 124: 653–663

    Article  CAS  Google Scholar 

  • Bonfante-Fasolo P (1986) Anatomy and morphology of VA mycorrhiza. In: Powell C, Bagyaraj D (eds) VA Mycorrhiza. CRC Press, Boca Raton, pp 2–33

    Google Scholar 

  • Brundrett M (1991) Mycorrhizas in natural ecosystems. Adv Ecol Res 21: 171–313

    Article  Google Scholar 

  • Cairney JWG, Meharg AA (1999) Influences of anthropogenic pollution on mycorrhizal fungal communities. Environ Pollut 106: 169–182

    Article  PubMed  CAS  Google Scholar 

  • Caldwell MM, Flint SD (1994) Stratospheric ozone reduction, solar UV-B radiation and terrestrial ecosystems. Climatic Change 28: 375–394

    Article  CAS  Google Scholar 

  • Caldwell MM, Teramura AH, Tevini M (1989) The changing solar ultraviolet climate and the ecological consequences for higher plants. Trends Ecol Evol 4: 363–367

    Article  PubMed  CAS  Google Scholar 

  • Caporn SJM, Song W, Read DJ, Lee JA (1995) The effect of repeated nitrogen fertilization on mycorrhizal infection in heather [Calluna vulgaris ( L.) Hull]. New Phytol 129: 605–609

    Google Scholar 

  • Coleman DC, Odum EP, Crossley DA (1992) Soil biology, soil ecology and global change. Biol Fertil Soils 14: 104–111

    Article  Google Scholar 

  • Colpaert JV, van Tichelen KK (1996) Mycorrhizas and environmental stress. In: Frankland JC, Magan N, Gadd GM (eds) Fungi and environmental change. Cambridge Univ Press, Cambridge, pp 109–128

    Chapter  Google Scholar 

  • Dai A, Trenberth KE, Karl TR (1999) Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J Climate 12: 2451–2473

    Article  Google Scholar 

  • Daniell TJ, Hodge A, Young JPW, Fitter A (1999) How many fungi does it take to change a plant community? Trends Plant Sci 4: 81–82

    Article  Google Scholar 

  • D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu Rev Ecol Syst 23: 63–87

    Google Scholar 

  • Di JJ, Allen EB (1991) Physiological responses of 6 wheatgrass cultivars to mycorrhiza. J Range Manage 44: 336–341

    Article  Google Scholar 

  • Diaz S (1996) Effects of elevated [CO21 at the community-level mediated by root symbionts. Plant Soil 187: 309–320

    Article  CAS  Google Scholar 

  • Drake BG, Peresta G, Beugeling E, Matamala R (1996) Long term elevated CO2 exposure in a Chesapeake Bay wetland: ecosystem gas exchange, primary production, and tissue nitrogen. In: Koch GW, Mooney HA (eds) Carbon dioxide and terrestrial ecosystems. Academic Press, San Diego, pp 197–214

    Chapter  Google Scholar 

  • Duckmanton L,Widden P (1994) Effect of ozone on the development of vesicular-arbuscular mycorrhiza in sugar maple saplings. Mycologia 86: 181–186

    Article  Google Scholar 

  • Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14: 135–139

    Article  PubMed  Google Scholar 

  • Edwards FE (1985) Indicators of low intensity ecosystem perturbations: shifts in herbaceous plants and arbuscular mycorrhizal fungi in two semi-arid ecosystems. MS Thesis, San Diego State University

    Google Scholar 

  • Egerton-Warburton LM, Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Appl 10: 484–496

    Article  Google Scholar 

  • Elliott ET, Coleman DC (1988) Let the soil work for us. Ecol Bull 39: 23–32

    Google Scholar 

  • Eom A-H, Hartnett DC, Wilson GWT, Figge DAH (1999) The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in tallgrass prairie. Am Midland Nat 142: 55–70

    Article  Google Scholar 

  • Faber BA, Zasoski RJ, Munns DN, Shackel K (1991) A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. Can J Bot 69: 87–94

    Article  Google Scholar 

  • Field CB, Chapin FS, Matson PA, Mooney HA (1992) Reponses of terrestrial ecosystems to the changing atmosphere: a resource-based approach. Annu Rev Ecol Syst 23: 201–236

    Article  Google Scholar 

  • Fitter AH, Self GK, Brown TK, Bogie DS, Graves JD, Benham D, Ineson P (1999) Root production and turnover in an upland grassland subjected to artificial soil warming respond to radiation flux and nutrients, not temperature. Oecologia 120: 575–581

    Article  Google Scholar 

  • Gange AC, Lindsay DE, Ellis LS (1999) Can arbuscular mycorrhizal fungi be used to control the undesirable grass Port annua on golf courses? J Appl Ecol 36: 909–919

    Article  Google Scholar 

  • Gorissen A, Joosten NN, Jansen AE (1991) Effects of ozone and ammonium sulfate on carbon partitioning to mycorrhizal roots of juvenile Douglas fir. New Phytol 119: 243–250

    Article  CAS  Google Scholar 

  • Gorissen A, Kuyper TW (2000) Fungal species-specific responses of ectomycorrhizal Scots pine (Pinus sylvestris) to elevated [CO2]. New Phytol 146: 163–168

    Article  CAS  Google Scholar 

  • Gurney RJ, Foster JL, Parkinson CL (1993) Atlas of satellite observations related to global change. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Hartge KH, Stewart BA (1995) Soil structure: its development and function. Advances in soil sciences. CRC/Lewis Publishers, Boca Raton

    Google Scholar 

  • Heagle AS (1989) Ozone and crop yield. Annu Rev Phytopathol 27: 397–423

    Article  CAS  Google Scholar 

  • Heath RL (1998) Oxidant induced alteration of carbohydrate production and allocation in plants. In: Bytnerowicz A, Arbaugh MJ, Schilling SL (eds) Proceedings of the international symposium on air pollution and climate change effects on forest ecosystems. Albany, California, Pacific Southwest Research Station, Forest Service, USDA, Riverside, CA, pp 11–18

    Google Scholar 

  • Hodge A (1996) Impact of elevated CO2 on mycorrhizal associations and implications for plant-growth. Biol Fertil Soil 23: 388–398

    Article  CAS  Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent. Trends Ecol Evol 15: 56–61

    Article  PubMed  Google Scholar 

  • Jansen AE, Dighton J (1990) Effects on air pollutants on ectomycorrhiza. A review. Air Pollut Res Rep 30: 1–58

    Google Scholar 

  • Jastrow JD, Miller RM (1997) Soil aggregate stabilization and carbon sequestration: feedbacks through organomineral associations. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Soil processes and the carbon cycle. CRC Press, Boca Raton, pp 207–223

    Google Scholar 

  • Johansson M (1992) Effects of nitrogen application on ericoid mycorrhizas of Calluna vulgaris on a Danish heathland. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International Wallingford, p 386

    Google Scholar 

  • Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhiza. Ecol Appl 3: 749–757

    Article  Google Scholar 

  • Jonasson S, Shaver GR (1999) Within-stand nutrient cycling in arctic and boreal wetlands. Ecology 80: 2139–2150

    Article  Google Scholar 

  • Jongen M, Fay P, Jones MB (1996) Effects of elevated carbon dioxide and arbuscular mycorrhizal infection on Trifolium repens. New Phytol 132: 413–423

    Article  CAS  Google Scholar 

  • Kandeler E, Tscherko D, Bardgett RD, Hobbs PJ, Kampichler C, Jones TH (1998) The response of soil microorganisms and roots to elevated CO, and temperature in a terrestrial model ecosystem. Plant Soil 202: 251–262

    Article  CAS  Google Scholar 

  • Karen O, Nylund JE (1997) Effects of ammonium-sulfate on the community structure and biomass of ectomycorrhizal fungi in a Norway Spruce stand in southwestern Sweden. Can J Bot 75: 1628–1642

    Article  CAS  Google Scholar 

  • Kasurinen A, Helmisaari HS, Holopainen T (1999) The influence of elevated CO2 and 03 on fine roots and mycorrhizas of naturally growing young Scots pine trees during three exposure years. Global Change Biol 5: 771–780

    Article  Google Scholar 

  • Keeling CD, Whorf TP, Wahlen M, van der Plicht J (1995) Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375: 666–670

    Article  CAS  Google Scholar 

  • Klironomos JN, Allen MF (1995) UV-B-mediated changes on belowground communities associated with the roots of Acer saccharum. Funct Ecol 9: 923–930

    Article  Google Scholar 

  • Klironomos JN, Rillig MC, Allen MF, Zak DR, Kubiske M, Pregitzer KS (1997) Soil fungal-arthropod responses to Populus tremuloides grown under enriched atmospheric CO, under field conditions. Global Change Biol 3: 473–478

    Article  Google Scholar 

  • Lee JA, Caporn SJM, Read DJ (1992) Effects of increasing nitrogen deposition and acidification on heathlands. In: Schneider T (ed) Acidification research, evaluation and policy applications. Elsevier, Amsterdam, pp 97–106

    Chapter  Google Scholar 

  • Lumsden PI (ed) (1997) Plants and UV-B: responses to environmental change. Society for Experimental Biology (Great Britain) 64. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Luo Y, Reynolds JF (1999) Validity of extrapolating field CO, experiments to predict carbon sequestration in natural ecosystems. Ecology 80: 1568–1583

    Article  Google Scholar 

  • Lussenhop J, Treonis A, Curtis PS, Teeri JA, Vogel CS (1998) Response of soil biota to elevated atmospheric CO2 in poplar model systems. Oecologia 113: 247–251

    Article  Google Scholar 

  • Lyles LL, Hagen LJ, Skidmore EL (1983) Soil conservation: Principles of erosion by wind. In: Dregne HE, Willis WW (eds) Dryland agriculture. American Society of Agronomy, Madison WI, pp 177–188

    Google Scholar 

  • Marler MJC, Zabinski C, Callaway R (1999) Mycorrhiza indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology 80: 1180–1186

    Article  Google Scholar 

  • Matson PA, McDowell WH, Townsend AR, Vitousek PM (1999) The globalization of N deposition: ecosystem consequences in tropical environments. Biogeochemistry 46: 67–83

    CAS  Google Scholar 

  • McCool PM, Menge JA (1984) Interaction of ozone and mycorrhizal fungi on tomato as influenced by fungal species and host variety. Soil Biol Biochem 16: 425–427

    Article  CAS  Google Scholar 

  • McQuattie CJ, Schier GA (1992) Effect of ozone and aluminum on pitch pine (Pinusrigida) seedlings: anatomy of a mycorrhiza. Can J For Res 22: 1901–1916

    Article  CAS  Google Scholar 

  • Menge JA, Grand LF (1978) Effect of fertilization on production of epigeous basidiocarps by mycorrhizal fungi in loblolly-pine plantations. Can J Bot 56: 2357–2362

    Article  CAS  Google Scholar 

  • Miglietta F, Raschi A (1993) Studying the effects of elevated CO, in the open in a naturally enriched environment in Central Italy. Vegetatio 104 /105: 391–400

    Google Scholar 

  • Miller SP, Bever JD (1999) Distribution of arbuscular mycorrhizal fungi in stands of the wetland grass Panicum hemitomon along a wide hydrologic gradient. Oecologia 119: 586–592

    Article  Google Scholar 

  • Miller JE, Shafer SR, Schoeneberger MM, Pursley WA, Horton SJ, Davey CB (1997) Influence of a mycorrhizal fungus and/or rhizobium on growth and biomass partitioning of subterranean clover exposed to ozone. Water Air Soil Pollut 96: 233–248

    CAS  Google Scholar 

  • Monz CA, Hunt HW, Reeves FB, Elliott ET (1994) The response of mycorrhizal colonization to elevated CO2 and climate change in Pascopyrum smithii and Bouteloua gracilis. Plant Soil 165: 75–80

    Article  CAS  Google Scholar 

  • Mullen RB, Schmidt SK (1993) Mycorrhizal infection, phosphorus uptake, and phenology in Ranunculus adoneus: implications for the functioning of mycorrhiza in alpine systems. Oecologia 94: 229–234

    Article  Google Scholar 

  • Mullen RB, Schmidt SK, Jaeger CH (1998) Nitrogen uptake during snowmelt by the snow buttercup, Ranunculus adoneus. Arct Alp Res 30: 121–125

    Article  Google Scholar 

  • Nadelhoffer KJ, Emmett BA, Gundersen P, Kjonaas 0J, Koopmans CJ, Schleppi P, Tietemal A, Wright RF (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Science 398: 145–147

    CAS  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10: 407–411

    Article  PubMed  CAS  Google Scholar 

  • Newsham KK, Greenslade PD, McLeod AR (1999) Effects of elevated ultraviolet radiation on Quercus robur and its insect and ectomycorrhizal associates. Global Change Biol 5: 881–890

    Article  Google Scholar 

  • Newton PCD, Bell CC, Clark H (1996) Carbon dioxide emissions from mineral springs in Northland and the potential of these sites for studying the effects of elevated carbon dioxide on pastures. N Z J Agric Res 39: 33–40

    Article  Google Scholar 

  • Nilsen P, Borja I, Knutsen H, Brean R (1998) Nitrogen and drought effects on ectomycorrhiza of Norway spruce (Picea abies L. ( Karst.)). Plant Soil 198: 179–184

    Google Scholar 

  • Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76: 319–337

    Article  CAS  Google Scholar 

  • Oechel WC, Callaghan T, Gilmanov T, Hiolten JI, Maxwell B, Molau U, Sveinbjoernsson B (1997) Global and regional patterns of climate change: recent predictions for the Arctic. In: Rowntree PR (ed) Global change and Arctic terrestrial ecosystems. Ecological studies. Springer, Berlin Heidelberg New York, pp 82–109

    Google Scholar 

  • Olesniewicz KS, Thomas RB (1999) Effects of mycorrhizal colonization on biomass production and nitrogen fixation of black locust (Robinia pseudoacacia) seedlings grown under elevated atmospheric carbon dioxide. New Phytol 142: 133–140

    Article  Google Scholar 

  • O’Neill EG, O’Neill RV, Norby RJ (1991) Hierarchy theory as a guide to mycorrhizal research on large-scale problems. Environ Pollut 73: 271–284

    Article  PubMed  Google Scholar 

  • Pattinson GS, Hammill KA, Sutton BG, McGee PA (1999) Simulated fire reduces the density of arbuscular mycorrhizal fungi at the soil surface. Mycol Res 103: 491–496

    Article  Google Scholar 

  • Peterson RL, Farquhar ML (1994) Mycorrhizas–integrated development between roots and fungi. Mycologia 86: 311–326

    Article  Google Scholar 

  • Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398: 611–615

    Article  CAS  Google Scholar 

  • Pritchard SG, Rogers HH, Prior SA, Peterson CM (1999) Elevated CO2 and plant structure: a review. Global Change Biol 5: 807–837

    Article  Google Scholar 

  • Rayner ADM (1991) The challenge of the individualistic mycelium. Mycologia 83: 48–71

    Article  Google Scholar 

  • Read DJ (1983) The biology of mycorrhiza in the Ericales. Can J Bot 61: 985–1004

    Article  CAS  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems–Nature’s response to the “Law of the minimum”. In: Hawksworth DL (ed) Frontiers in mycology. CAB International, Regensburg, pp 101–130

    Google Scholar 

  • Rillig MC, Allen MF (1998) Arbuscular mycorrhiza of Gutierrezia sarothrae and elevated carbon dioxide: evidence for shifts in C allocation to and within the mycobiont. Soil Biol Biochem 30: 2001–2008

    Article  CAS  Google Scholar 

  • Rillig MC, Allen MF (1999) What is the role of arbuscular mycorrhizal fungi in plant-toecosystem responses to elevated atmospheric CO2? Mycorrhiza 9: 1–8

    Article  Google Scholar 

  • Rillig MC, Allen MF, Klironomos JN, Field CB (1998) Arbuscular mycorrhizal percent root infection and infection intensity of Bromus hordeaceus grown in elevated atmospheric CO2. Mycologia 90: 199–205

    Article  Google Scholar 

  • Rillig MC, Field CB, Allen MF (1999a) Soil biota responses to long-term atmospheric CO2 enrichment in two California annual grasslands. Oecologia 119: 572–577

    Article  Google Scholar 

  • Rillig MC, Wright SF, Allen MF, Field CB (1999b) Long-term CO2 elevation affects soil structure of natural ecosystems. Nature 400: 628

    Article  CAS  Google Scholar 

  • Rillig MC, Hernandez GY, Newton PCD (2000) Arbuscular mycorrhiza respond to elevated atmospheric CO2 after long-term exposure: evidence from a CO2 spring in New Zealand supports the resource-balance model. Ecol Lett 3: 475–478

    Article  Google Scholar 

  • Rouhier H, Read DJ (1998a) Plant and fungal responses to elevated atmospheric carbon dioxide in mycorrhizal seedlings of Pin us sylvestris. Environ Exp Bot 40: 237–246

    Article  Google Scholar 

  • Rouhier H, Read DJ (1998b) The role of mycorrhiza in determining the response of Plantago lanceolata to CO2 enrichment. New Phytol 139: 367–373

    Article  Google Scholar 

  • Rousseaux MC, Ballare CL, Scopel AL, Searles PS, Caldwell MM (1998) Solar ultraviolet B radiation affects plant insect interactions in a natural ecosystem of Tierra del Fuego (southern Argentina). Oecologia 116: 528–535

    Article  Google Scholar 

  • Rozema J, van de Staaij J, Bjorn LO, Caldwell M (1997) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 12: 22–28

    Article  PubMed  CAS  Google Scholar 

  • Sandermann H (1996) Ozone and plant health. Annu Rev Phytopathol 34: 347–366

    Article  PubMed  CAS  Google Scholar 

  • Sanders IR, Streitwolf-Engel R, van der Heijden MGA, Boiler T, Wiemken A (1998) Increased allocation to external hyphae of arbuscular mycorrhizal fungi under CO2 enrichment. Oecologia 117: 496–503

    Article  Google Scholar 

  • Santer BD, Wigley TML, Barnett TP, Anayamba E (1996) Detection of climate change and attribution of causes. In: Houghton J, Meira Filho LG, Callander BA, Harris N, Katten-berg A, Maskell K (eds) Climate change 1995: science of climate change. Cambridge Univ Press, Cambridge, pp 407–444

    Google Scholar 

  • Schmid B, Birrer A, Lavigne C (1996) Genetic variation in the response of plant populations to elevated CO2 in a nutrient-poor, calcareous grassland. In: Körner C, Bazzaz FA (eds) Carbon dioxide, populations, and communities. Academic Press, San Diego, pp 31–50

    Chapter  Google Scholar 

  • Seegmuller S, Rennenberg H (1994) Interactive effects of mycorrhization and elevated carbon dioxide on growth of young pedunculate oak (Quercus robur L) trees. Plant Soil 167: 325–329

    Article  Google Scholar 

  • Smith ML, Bruhn JN, Anderson JB (1992) The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356: 428–431

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, San Diego

    Google Scholar 

  • Staddon PL, Fitter AH (1998) Does elevated atmospheric carbon dioxide affect arbuscular mycorrhizas? Trends Ecol Evol 13: 455–458

    Article  PubMed  CAS  Google Scholar 

  • Staddon PL, Fitter AH, Graves JD (1999a) Effect of elevated atmospheric CO2 on mycorrhizal colonization, external mycorrhizal hyphal production and phosphorus inflow in Plantago lanceolata and Trifolium repens in association with the arbuscular mycorrhizal fungus Glomus mosseae. Global Change Biol 5: 347–358

    Article  Google Scholar 

  • Staddon PL, Fitter AH, Robinson D (1999b) Effects of mycorrhizal colonization and elevated atmospheric carbon dioxide on carbon fixation and below-ground carbon partitioning in Plantago lanceolata. J Exp Bot 50: 853–860

    CAS  Google Scholar 

  • Stribley DP, Read DJ (1976) Biology of mycorrhiza in Ericaceae 6. Effects of mycorrhizal infection and concentration of ammonium nitrogen on growth of cranberry (Vaccinium macrocarpon Ait) in sand culture. New Phytol 77: 63–72

    Article  CAS  Google Scholar 

  • Stroo HF, Reich PB, Schoettle AW, Amundson RG (1988) Effects of ozone and acid-rain on white-pine (Pinus-Strobus) seedlings grown in 5 soils 2. Mycorrhizal infection. Can J Bot 66: 1510–1516

    Google Scholar 

  • Taylor AFS, Alexander IJ (1989) Demography and populations dynamics of ectomycorrhizas of Sitka spruce fertilized with N. Ecosyst Environ 28: 493–496

    Article  Google Scholar 

  • Termorshuizen AJ (1993) The influence of nitrogen fertilizers on ectomycorrhizas and their fungal carpophores in young stands of Pinus sylvestris. For Ecol Manage 57: 179–189

    Article  Google Scholar 

  • Thormann MN, Currah RS, Bayley SE (1999) The mycorrhizal status of the dominant vegetation along a peatland gradient in southern boreal Alberta, Canada. Wetlands 19: 438–450

    Google Scholar 

  • Tingey DT, Johnson MG, Phillips DL, Storm MJ (1995) Effects of elevated CO2 and nitrogen on ponderosa pine fine roots and associated fungal components. J Biogeogr 22: 281–287

    Article  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33: 141–163

    Article  CAS  Google Scholar 

  • Tobar R, Azcon R, Barea JM (1994) Improved nitrogen uptake and transport from 15N-labeled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytol 126: 119–122

    Article  Google Scholar 

  • Treseder KK, Allen MF (2000) The potential role of mycorrhizal fungi in soil carbon storage under elevated CO, and nitrogen deposition. New Phytol 147: 189–200

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396: 69–72

    Article  CAS  Google Scholar 

  • van de Staaij J, Rozeman J, van Beem A, Aerts R (2001) Increased solar UV-B radiation may reduce infection by arbuscular mycorrhizal fungi ( AMF) in dune grassland plants; evidence from five year field exposure. Plant Ecol 154: 169–177

    Google Scholar 

  • Virginia RA, Wall DH (1999) How soils structure communities in the Antarctic Dry Valleys. BioScience 49: 973–983

    Article  Google Scholar 

  • Vitousek PM (1994) Beyond global warming: ecology and global change. Ecology 75: 1861–1876

    Article  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7: 737–750

    Google Scholar 

  • Walker RF, Geisinger DR, Johnson DW, Ball JT (1995) Interactive effects of atmospheric CO2 enrichment and soil N on growth and ectomycorrhizal colonization of ponderosa pine seedlings. For Sci 41: 491–500

    Google Scholar 

  • Walker RF, Geisinger DR, Johnson DW, Ball JT (1997) Elevated atmospheric CO, and soil N fertility effects on growth, mycorrhizal colonization, and xylem water potential of juvenile ponderosa pine in a field soil. Plant Soil 195: 25–36

    CAS  Google Scholar 

  • Wallander H (1995) A new hypothesis to explain allocation of dry matter between mycor- rhizal fungi and pine seedlings in relation to nutrient supply. Plant Soil 169: 243–248

    Article  Google Scholar 

  • Wallander H, Nylund JE (1992) Effects of excess nitrogen and phosphorus starvation on the extramatrical mycelium of ectomycorrhizas of Pinus sylvestris L. New Phytol 120: 495–503

    Article  CAS  Google Scholar 

  • Wallander H, Arnebrant K, Dahlberg A (1999) Relationships between fungal uptake of ammonium, fungal growth and nitrogen availability in ectomycorrhizal Pinus sylvestris seedlings. Mycorrhiza 8: 215–223

    Article  CAS  Google Scholar 

  • Wallenda T, Kottke I (1998) Nitrogen deposition and ectomycorrhizas. New Phytol 139: 169–187

    Article  CAS  Google Scholar 

  • Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161: 575–586

    Article  CAS  Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198: 97–107

    Article  CAS  Google Scholar 

  • Wright SF, Franke-Snyder M, Morton JB, Upadhyaya A (1996) Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil 181: 193–203

    Article  CAS  Google Scholar 

  • Yesmin L, Gammack SM, Cresser MS (1996) Effects of atmospheric nitrogen deposition on ericoid mycorrhizal infection of Calluna vulgaris growing in peat. Appl Soil Ecol 4: 49–60

    Article  Google Scholar 

  • Young IM, Blanchart E, Chenu C, Dangerfield M, Fragoso C, Grimaldi M, Ingram J, Monrozier L (1998) The interaction of soil biota and soil structure under global change. Global Change Biol 4: 703–712

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rillig, M.C., Treseder, K.K., Allen, M.F. (2002). Global Change and Mycorrhizal Fungi. In: van der Heijden, M.G.A., Sanders, I.R. (eds) Mycorrhizal Ecology. Ecological Studies, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38364-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38364-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00204-8

  • Online ISBN: 978-3-540-38364-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics