Skip to main content

Six Emerging Directions in Sculptured-Thin-Film Research

  • Chapter

Part of the book series: Advances in Solid State Physics ((ASSP,volume 46))

Abstract

Sculptured thin films (STFs) are assemblies of shaped, parallel, identical nanowires generally grown by vapor deposition techniques on substrates. Their optical applications have advanced significantly during the last decade, and several new directions have begun to emerge in the past two years. These include: (a) STF light emitters; (b) STFs with optical gain; (c) electrically controlled STFs; (d) deposition of polymeric STFs by replamineform, multibeam lithographic, and mixed vapor deposition techniques; (e) growth of bioscaffolds on STFs; and (f) STFs with transverse architectures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Lakhtakia, R. Messier: Sculptured Thin Films: Nanoengineered Morphology and Optics. (SPIE Press, Bellingham, WA, USA 2005)

    Book  Google Scholar 

  2. A. Lakhtakia, R. Messier, M. J. Brett, K. Robbie: Innovations Mater. Res. 1, 165 (1996)

    Google Scholar 

  3. I. J. Hodgkinson, Q. h. Wu: Adv. Mater. 13, 889 (2001)

    Article  Google Scholar 

  4. J. A. Polo Jr.: In Micromanufacturing and Nanotechnology Ed. N. P. Mahalik. (Springer-Verlag, Heidelberg 2005)

    Google Scholar 

  5. J. B. Geddes III: In Frontiers in Optical Technology: Materials and Devices Eds. P. K. Choudhury and O. N. Singh. (Nova Publishers, New York 2006)

    Google Scholar 

  6. F. Wang: In Surface Nanophotonics: Principles and Applications Eds. D. L. Andrews and Z. Gaburro. (Springer-Verlag, New York 2006)

    Google Scholar 

  7. D. M. Mattox: The Foundations of Vacuum Coating Technology. (Noyes Publications, Norwich, NY, USA 2003)

    Google Scholar 

  8. J. A. Sherwin, A. Lakhtakia: Math. Comput. Model. 34, 1499 (2001); corrections: 35, 1355 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Lakhtakia: Opt. Commun. 188, 313 (2001)

    Article  ADS  Google Scholar 

  10. X.-H. Xu, A. J. Bard: J. Am. Chem. Soc. 117, 2627 (1995)

    Article  Google Scholar 

  11. A. Islam, N. Ikeda, A. Yoshimura, T. Ohno: Inorg. Chem. 37, 3093 (1998)

    Article  Google Scholar 

  12. E. S. Handy, A. J. Pal, M. F. Rubner: J. Am. Chem. Soc. 121, 3525 (1999)

    Article  Google Scholar 

  13. A. Lakhtakia: Microw. Opt. Technol. Lett. 37, 37 (2003)

    Article  Google Scholar 

  14. A. Lakhtakia: Opt Commun. 202, 103 (2002); corrections: 203, 447 (2002)

    Article  ADS  Google Scholar 

  15. M. Voigt, M. Chambers, M. Grell: Chem Phys Lett 347, 173 (2001)

    Article  ADS  Google Scholar 

  16. M. Ozaki, M. Kasano, D. Ganzke, W. Haase, K. Yoshino: Adv. Mater. 14, 306 (2002)

    Article  Google Scholar 

  17. W. Klyne, J. Buckingham: Atlas of Stereochemistry. (Oxford University Press, Oxford, United Kingdom 1978)

    Google Scholar 

  18. E. Charney: The Molecular Basis of Optical Activity. (Krieger, Malabar, FL, USA 1985)

    Google Scholar 

  19. A. Lakhtakia: Beltrami Fields in Chiral Media. (World Scientific, Singapore 1994)

    Book  Google Scholar 

  20. D. Keller, I. Tinoco: Proc. Nat. Acad. Sci. USA 82, 401 (1985)

    Article  ADS  Google Scholar 

  21. T. W. King, G. L. Cote, R. McNichols, M.J. Goetz Jr.: Opt. Eng. 33, 2746 (1994)

    Article  ADS  Google Scholar 

  22. T. Yamada, H. Onuki, M. Yuri, S. Ishikaza: Jpn. J. Appl. Phys. Pt. 1 39, 310 (2000)

    Article  Google Scholar 

  23. A. Lakhtakia, J. Xu: Microw. Opt. Technol. Lett. 47, 63 (2005)

    Article  Google Scholar 

  24. J. Xu, A. Lakhtakia, J. Liou, A. Chen, I. J. Hodgkinson: Opt. Commun. (doi:10.1016/j.optcom.2006.02.025)

    Google Scholar 

  25. B. E. A. Saleh, M. C. Teich: Fundamentals of Photonics. (Wiley, New York 1991)

    Book  Google Scholar 

  26. P. Bhattacharya: Semiconductor Optoelectronic Devices, 2nd ed. (Prentice-Hall, New York 1996)

    Google Scholar 

  27. A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, J. M. Phillips: J. Appl. Phys. 80, 6954 (1996)

    Article  ADS  Google Scholar 

  28. X. Liu, D. Poitras, Y. Tao, C. Py: J. Vac. Sci. Technol. A 22, 764 (2004)

    Article  ADS  Google Scholar 

  29. A. Lakhtakia, J. Xu: Optik (doi:10.1016/j.ijleo.2006.01.011)

    Google Scholar 

  30. R. W. Boyd: Nonlinear Optics. (Academic Press, London 1992)

    Google Scholar 

  31. J. A. Reyes, A. Lakhtakia: Opt. Commun. 259, 164 (2006)

    Article  ADS  Google Scholar 

  32. A. Lakhtakia: Opt. Commun. (doi:10.1016/j.optcom.2005.12.031)

    Google Scholar 

  33. A. Lakhtakia: Phys. Lett. A (doi:10.1016/j.physleta.2006.01.069)

    Google Scholar 

  34. A. Lakhtakia: Asian J. Phys., at press (2006)

    Google Scholar 

  35. A. Lakhtakia: Microw. Opt. Technol. Lett., submitted (2006)

    Google Scholar 

  36. A. Yariv, P. Yeh: Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, New York 2007)

    Google Scholar 

  37. N. Kukhtarev, T. Kukhtareva, M. E. Edwards, B. Penn, D. Frazier, H. Adeldayem, P. P. Banerjee, T. Hudson, W. A. Friday: J. Nonlin. Opt. Phys. Mater. 11, 445 (2002)

    Article  ADS  Google Scholar 

  38. K. D. Harris, K. L. Westra, M. J. Brett: Electrochem. Solid State 4, C39 (2001)

    Article  Google Scholar 

  39. F. Wang, A. Lakhtakia, R. Messier: J. Modern Opt. 50, 239 (2003)

    ADS  Google Scholar 

  40. A. L. Elias, K. D. Harris, C. W. M. Bastiaansen, D. J. Broer, M. J. Brett: J. Micromech. Microeng. 15, 49 (2005)

    Article  ADS  Google Scholar 

  41. S. Pursel, M. W. Horn, M. C. Demirel, A. Lakhtakia: Polymer 46, 9544 (2005)

    Article  Google Scholar 

  42. M. Farsari, G. Filippidis, G. Fotakis: Opt. Lett. 30, 3180 (2005)

    Article  ADS  Google Scholar 

  43. E. R. Dedman, D. N. Sharp, A. J. Turberfield, C. F. Blanford, R. G. Denning: Photon. Nanostruct. Fund. Appl. 3, 79 (2005)

    Article  ADS  Google Scholar 

  44. Y. K. Pang, J. C. W. Lee, H. F. Lee, W. Y. Tam, C. T. Chan, P. Sheng: Opt. Express 13, 7615 (2005)

    Article  ADS  Google Scholar 

  45. M. W. Horn, M. D. Pickett, R. Messier, A. Lakhtakia: Nanotechnology 15, 303 (2004)

    Article  ADS  Google Scholar 

  46. M. W. Horn, M. D. Pickett, R. Messier, A. Lakhtakia: J. Vac. Sci. Technol. B 22, 3426 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lakhtakia, A., Demirel, M.C., Horn, M.W., Xu, J. (2008). Six Emerging Directions in Sculptured-Thin-Film Research. In: Advances in Solid State Physics. Advances in Solid State Physics, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38235-5_22

Download citation

Publish with us

Policies and ethics