Skip to main content

Functional Data Analysis of the Dynamics of Gene Regulatory Networks

  • Conference paper
Knowledge Exploration in Life Science Informatics (KELSI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3303))

Abstract

A new method for constructing gene networks from microarray time-series gene expression data is proposed in the context of Bayesian network approach. An essential point of Bayesian network modeling is the construction of the conditional distribution of each random variable. When estimating the conditional distributions from gene expression data, a common problem is that gene expression data contain multiple missing values. Unfortunately, many methods for constructing conditional distributions require a complete gene expression value and may lose effectiveness even with a few missing value. Additionally, they treat microarray time-series gene expression data as static data, although time can be an important factor that affects the gene expression levels.

We overcome these difficulties by using the method of functional data analysis. The proposed network construction method consists of two stages. Firstly, discrete microarray time-series gene expression values are expressed as a continuous curve of time. To account for the time dependency of gene expression measurements and the noisy nature of the microarray data, P-spline nonlinear regression models are utilized. After this preprocessing step, the conditional distribution of each random variable is constructed based on functional linear regression models. The effectiveness of the proposed method is investigated through Monte Carlo simulations and the analysis of Saccharomyces cerevisiae gene expression data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pac. Symp. Biocomput. 4, 17–28 (1999)

    Google Scholar 

  2. Ando, T., Imoto, S., Miyano, S.: Bayesian network and radial basis function network regression for nonlinear modeling of genetic network. In: Proc. International Conference on Information 2004 (2004) (in press)

    Google Scholar 

  3. Chen, T., He, H.L., Church, G.M.: Modeling gene expression with differential equations. Pac. Symp. Biocomput. 4, 29 (1999)

    Google Scholar 

  4. Eilers, P.H.C., Marx, B.D.: Flexible smoothing with B-splines and penalties (with discussion). Statistical Science 11, 89–121 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fitzpatrick, P.J., Toyn, J.H., Millar, J.B., Johnston, L.H.: DNA replication is completed in Saccharomyces cerevisiae cells that lack functional Cdc14, a dualspecificity protein phosphatase. Mol. Gen. Genet. 258, 437–441 (1998)

    Article  Google Scholar 

  6. Friedman, N., Goldszmidt, M.: Learning Bayesian Networks with Local Structure. In: Jordan, M.I. (ed.), pp. 421–459. Kluwer Academic Publisher, Dordrecht (1998)

    Google Scholar 

  7. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian network to analyze expression data. J. Comp. Biol. 7, 601–620 (2000)

    Article  Google Scholar 

  8. Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., Brown, P.O.: Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell. 11, 4241–4257 (2000)

    Google Scholar 

  9. Green, P.J., Silverman, B.W.: Nonparametric Regression and Generalized Liner Models. Chapman and Hall, London (1994)

    Google Scholar 

  10. Hartemink, A.J., Gifford, D.K., Jaakkola, T.S., Young, R.A.: Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pac. Symp. Biocomput. 6, 422–433 (2001)

    Google Scholar 

  11. Hastie, T.J., Tibshirani, R.J.: Generalized Additive Models. Chapman and Hall, London (1990)

    MATH  Google Scholar 

  12. Honey, S., Schneider, B.L., Schieltz, D.M., Yates, J.R., Futcher, B.: A novel multiple affinity purification tag and its use in identification of proteins associated with a cyclin-CDK complex. Nucleic Acids Res 15, E24 (2001)

    Article  Google Scholar 

  13. Imoto, S., Goto, T., Miyano, S.: Estimation of genetic networks and functional structures between genes by using Bayesian network and nonparametric regression. Pac. Symp. Biocomput. 7, 175–186 (2002)

    Google Scholar 

  14. Kanehisa, M., Goto, S., Kawashima, S., Nakaya, A.: The KEGG databases at GenomeNet Nucleic Acids Res.  30, 42–46 (2002)

    Google Scholar 

  15. O’Sullivan, F., Yandell, B.S., Raynor, W.J.: Automatic smoothing of regression functions in generalized linear models. J. Am. Statist. Assoc. 81, 96–103 (1986)

    Article  MathSciNet  Google Scholar 

  16. Pe’er, D., Regev, A., Elidan, G., Friedman, N.: Inferring subnetworks from perturbed expression profiles. Bioinformatics 17, 215–224 (2001)

    Google Scholar 

  17. Ramsay, J.O., Silverman, B.W.: Functional Data Analysis. Springer, New York (1997)

    MATH  Google Scholar 

  18. Ramsay, J.O., Silverman, B.W.: Applied Functional Data Analysis. Springer, New York (2002)

    Book  MATH  Google Scholar 

  19. Reynard, G.J., Reynolds, W., Verma, R., Deshaies, R.J.: Cks1 Is Required for G1 Cyclin-Cyclin-Dependent Kinase Activity in Budding Yeast. Mol. Cell Biol. 20, 5858–5864 (2000)

    Article  Google Scholar 

  20. Schwab, M., Lutum, A.S., Seufert, W.: Yeast Hct1 is a regulator of Clb2 cyclin proteolysis. Cell 90, 683–693 (1997)

    Article  Google Scholar 

  21. Shmulevich, E.R., Dougherty, S., Kim, W.Z.: Probabilistic Boolean Networks: A Rule-based Uncertainty Model for Gene Regulatory Networks. Bioinformatics 18, 261–274 (2002)

    Article  Google Scholar 

  22. Stone, C.J.: Cross-validatory choise and assessment of statistical predictions (with discussion). J. Roy. Statist. Soc. B. 36, 111–147 (1974)

    MATH  Google Scholar 

  23. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R.B.: Missing value estimation methods for DNA microarrays. Bioinformatics 17, 520–525 (2001)

    Article  Google Scholar 

  24. Whittaker, E.: On a new method of graduation. Proc. Edinburgh Math. Soc. 41, 63–75 (1923)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ando, T., Imoto, S., Miyano, S. (2004). Functional Data Analysis of the Dynamics of Gene Regulatory Networks. In: López, J.A., Benfenati, E., Dubitzky, W. (eds) Knowledge Exploration in Life Science Informatics. KELSI 2004. Lecture Notes in Computer Science(), vol 3303. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30478-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30478-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23927-7

  • Online ISBN: 978-3-540-30478-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics