Skip to main content

Certificateless Public Key Signature Schemes from Standard Algorithms

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11125))

Abstract

Certificateless public key cryptography (CL-PKC) is designed to have succinct public key management without using certificates at the same time avoid the key-escrow attribute in the identity-based cryptography. Security mechanisms employing implicit certificates achieve same goals. In this work, we first unify the security notions of these two types of mechanisms with a modified CL-PKC formulation. We further present a general key-pair generation algorithm for CL-PKC schemes and use it to construct certificateless public key signature (CL-PKS) schemes from standard algorithms. The technique, which we apply, helps defeat known-attacks against existing constructions, and the resulting schemes could be quickly deployed based on the existing standard algorithm implementations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In [12], a security model of the implicit certificate mechanism is defined. The model is more like for a key agreement and does not consider the Type-II adversary.

References

  1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40061-5_29

    Chapter  Google Scholar 

  2. Al-Riyami, S.S., Paterson, K.G.: CBE from CL-PKE: a generic construction and efficient schemes. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 398–415. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4_27

    Chapter  Google Scholar 

  3. An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_6

    Chapter  Google Scholar 

  4. Arazi, B.: Certification of DL/EC Keys. Submission to P1363 meeting (1998). http://grouper.ieee.org/groups/1363/StudyGroup/contributions/arazi.doc

  5. Baek, J., Safavi-Naini, R., Susilo, W.: Certificateless public key encryption without pairing. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 134–148. Springer, Heidelberg (2005). https://doi.org/10.1007/11556992_10

    Chapter  Google Scholar 

  6. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identification and signature schemes. J. Cryptol. 22, 1–61 (2009)

    Article  MathSciNet  Google Scholar 

  7. Bentahar, K., Farshim, P., Malone-Lee, J., Smart, N.P.: Generic constructions of identity-based and certificateless KEMs. J. Cryptol. 21, 178–199 (2008)

    Article  MathSciNet  Google Scholar 

  8. Bernstein, D.J.: Multi-User Schnorr Security, Revisited. Cryptology ePrint Archive, Report 2015/996 (2015)

    Google Scholar 

  9. Brown, D.: Generic groups, collision resistance, and ECDSA. Des. Codes Cryptogr. 35, 119–152 (2005)

    Article  MathSciNet  Google Scholar 

  10. Brown, D.: On the provable security of ECDSA. In: Advances in Elliptic Curve Cryptography, pp. 21–40. Cambridge University Press (2005)

    Google Scholar 

  11. Brown, D., Campagna, M., Vanstone, S.: Security of ECQV-certified ECDSA against passive adversaries. Cryptology ePrint Archive, Report 2009/620 (2009)

    Google Scholar 

  12. Brown, D.R.L., Gallant, R., Vanstone, S.A.: Provably secure implicit certificate schemes. In: Syverson, P. (ed.) FC 2001. LNCS, vol. 2339, pp. 156–165. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46088-8_15

    Chapter  Google Scholar 

  13. Certicom Research. SEC 4: Elliptic Curve Qu-Vanstone Implicit Certificate Scheme (ECQV). Version 1.0. (2013)

    Google Scholar 

  14. Cheng, Z., Chen, L.: Certificateless Public Key Signature Schemes from Standard Algorithms (Expanded Version). Cryptology ePrint Archive, Report 2018/386 (2018)

    Google Scholar 

  15. Cheng, Z., Chen, L., Ling, L., Comley, R.: General and efficient certificateless public key encryption constructions. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 83–107. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73489-5_6

    Chapter  Google Scholar 

  16. Choi, K.Y., Park, J.H., Hwang, J.Y., Lee, D.H.: Efficient certificateless signature schemes. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 443–458. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72738-5_29

    Chapter  Google Scholar 

  17. Fersch, M., Kiltz, E., Poettering, B.: On the one-per-message unforgeability of (EC) DSA and its variants. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 519–534. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_17

    Chapter  MATH  Google Scholar 

  18. GB/T 32918.2-2017. Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves-Part 2: Digital Signature Algorithm (2017)

    Google Scholar 

  19. Gentry, C.: Certificate-based encryption and the certificate revocation problem. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 272–293. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_17

    Chapter  Google Scholar 

  20. Girault, M.: Self-certified public keys. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 490–497. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_42

    Chapter  Google Scholar 

  21. Groves, M.: Elliptic Curve-Based Certificateless Signatures for Identity-Based Encryption (ECCSI). RFC 6507 (2012)

    Google Scholar 

  22. Harn, L., Ren, J., Lin, C.: Design of DL-based certificateless digital signatures. J. Syst. Softw. 82(5), 789–793 (2009)

    Article  Google Scholar 

  23. He, D., Chen, Y., Chen, J.: A new two-round certificateless authenticated key agreement protocol without bilinear pairings. Math. Comput. Model. 54(11–12), 3143–3152 (2011)

    Article  MathSciNet  Google Scholar 

  24. He, D., Chen, J., Zhang, R.: An efficient and provably-secure certificateless signature scheme without bilinear pairings. Int. J. Commun. Syst. 25(11), 1432–1442 (2012)

    Article  Google Scholar 

  25. Huang, X., Mu, Y., Susilo, W., Wong, D.S., Wu, W.: Certificateless signature revisited. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 308–322. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73458-1_23

    Chapter  Google Scholar 

  26. Huang, X., Susilo, W., Mu, Y., Zhang, F.: On the security of certificateless signature schemes from Asiacrypt 2003. Proc. CANS 2005, 13–25 (2005)

    Google Scholar 

  27. Jia, X., He, D., Liu, Q., Choo, K.-K.R.: An efficient provably-secure certificateless signature scheme for internet-of-things deployment. Ad Hoc Netw. (to appear)

    Google Scholar 

  28. ISO/IEC. Information Technology - Secruity Techniques - Digital Signatures with Appendix - Part 3: Discrete Logarithm Based Mechanisms. ISO/IEC 14888–3:2016 (2016)

    Google Scholar 

  29. ISO/IEC. Information Technology - Security Techniques - Encryption Algorithms - Part 2: Asymmetric Ciphers. ISO/IEC 18033–2:2006 (2006)

    Google Scholar 

  30. Lai, J., Kou, W.: Self-generated-certificate public key encryption without pairing. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 476–489. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_31

    Chapter  MATH  Google Scholar 

  31. Lippold, G., Boyd, C., Nieto, J.G.: Strongly secure certificateless key agreement. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 206–230. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03298-1_14

    Chapter  Google Scholar 

  32. Liu, W., Xie, Q., Wang, S., Han, L., Hu, B.: Pairing-free certificateless signature with security proof. J. Comput. Netw. Commun. 2014, 6 p. (2014). https://doi.org/10.1155/2014/792063. Article no. 792063

    Article  Google Scholar 

  33. Malone-Lee, J., Smart, N.P.: Modifications of ECDSA. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 1–12. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36492-7_1

    Chapter  Google Scholar 

  34. Menezes, A., Smart, N.P.: Security of signature schemes in a multi-user setting. Des. Codes Cryptogr. 33, 261–274 (2004)

    Article  MathSciNet  Google Scholar 

  35. Pintsov, L.A., Vanstone, S.A.: Postal revenue collection in the digital age. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 105–120. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45472-1_8

    Chapter  Google Scholar 

  36. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_18

    Chapter  Google Scholar 

  37. Shafagh, H.: Leveraging public-key-based authentication for the Internet of Things. Master thesis. https://www.inf.ethz.ch/personal/mshafagh/master_thesis_Hossein_Shafagh_PKC_in_the_IoT.pdf

  38. STMicroelectronics. UM1924: STM32 Crypto Library. http://www.st.com/resource/en/user_manual/dm00215061.pdf

  39. Sun, Y., Zhang, F., Baek, J.: Strongly secure certificateless public key encryption without pairing. In: Bao, F., Ling, S., Okamoto, T., Wang, H., Xing, C. (eds.) CANS 2007. LNCS, vol. 4856, pp. 194–208. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76969-9_13

    Chapter  Google Scholar 

  40. Tian, M., Huang, L.: Cryptanalysis of a certificateless signature scheme without pairings. Int. J. Commun. Syst. 26(11), 1375–1381 (2013)

    Article  Google Scholar 

  41. Whyte, W., Weimerskircht, A., Kumar, V., Hehn, T.: A security credential management system for V2V communications. In: Proceedings of 2013 IEEE Vehicular Networking Conference, pp. 1–8 (2013)

    Google Scholar 

  42. Yeh, K.-H., Su, C.H., Choo, K.-K.R., Chiu, W.: A novel certificateless signature scheme for smart objects in the Internet-of-Things deployment. Sensors 2017, 17 (1001)

    Article  Google Scholar 

  43. Zhang, Z., Wong, D.S., Xu, J., Feng, D.: Certificateless public-key signature: security model and efficient construction. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 293–308. Springer, Heidelberg (2006). https://doi.org/10.1007/11767480_20

    Chapter  Google Scholar 

  44. Zhang, L., Zhang, F., Zhang, F.: New efficient certificateless signature scheme. In: Denko, M.K., Shih, C., Li, K.-C., Tsao, S.-L., Zeng, Q.-A., Park, S.H., Ko, Y.-B., Hung, S.-H., Park, J.H. (eds.) EUC 2007. LNCS, vol. 4809, pp. 692–703. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77090-9_64

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, Z., Chen, L. (2018). Certificateless Public Key Signature Schemes from Standard Algorithms. In: Su, C., Kikuchi, H. (eds) Information Security Practice and Experience. ISPEC 2018. Lecture Notes in Computer Science(), vol 11125. Springer, Cham. https://doi.org/10.1007/978-3-319-99807-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99807-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99806-0

  • Online ISBN: 978-3-319-99807-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics