Skip to main content

Quantum Batteries

  • Chapter
  • First Online:
Thermodynamics in the Quantum Regime

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 195))

Abstract

This chapter is a survey of the published literature on quantum batteries – ensembles of non-degenerate quantum systems on which energy can be deposited, and from which work can be extracted. A pedagogical approach is used to familiarize the reader with the main results obtained in this field, starting from simple examples and proceeding with in-depth analysis. An outlook for the field and future developments are discussed at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In thermodynamics a closed system is only allowed to exchange either work or heat, in contrast with an isolated system which is not allowed to exchange either of them. Here, by closed, we mean isolated quantum system undergoing Schrödinger evolution, but whose initial state can be mixed.

  2. 2.

    See Ref. [20] for an extended review on quantum speed limits and their applications.

  3. 3.

    The unique distance on the space of pure states that is invariant under unitary operations is the Fubini-Study distance, given by the angle between the two considered states [21].

  4. 4.

    The operator norm \(||\cdot ||_{\text {op}}\) of an operator H is equal to its largest singular value; if the operator H is Hermitian (and any Hamiltonian is) then the operator norm is equal to the largest eigenvalue.

  5. 5.

    For example, in the case of 2-level systems such interactions have non-trivial components proportional to products of n Pauli operators \(\sigma _i^{(1)}\otimes \cdots \sigma _j^{(n)}\), with \(i=1,2,3\).

  6. 6.

    More precisely, CPBs are referred to as charge qubits in the large charging energy regime; when the charging energy is small, they are referred to as flux qubits.

References

  1. C.A. Vincent, B. Scrosati, Modern Batteries : An Introduction to Electrochemical Power Sources (Arnold, 1997), p. 351. https://doi.org/10.1016/B978-0-340-66278-6.X5000-1

  2. J. Goold, M. Huber, A. Riera, L. del Rio, P. Skrzypczyk, J. Phys. A: Math. Theor. 49, 143001 (2016). https://doi.org/10.1088/1751-8113/49/14/143001

    Article  ADS  Google Scholar 

  3. S. Vinjanampathy, J. Anders, Contemp. Phys. 57, 545 (2016). https://doi.org/10.1080/00107514.2016.1201896

    Article  ADS  Google Scholar 

  4. F. Campaioli, F.A. Pollock, F.C. Binder, L. Céleri, J. Goold, S. Vinjanampathy, K. Modi, Phys. Rev. Lett. 118, 150601 (2017). https://doi.org/10.1103/PhysRevLett.118.150601

    Article  ADS  Google Scholar 

  5. R. Alicki, M. Fannes, Phys. Rev. E 87, 042123 (2013). https://doi.org/10.1103/PhysRevE.87.042123

    Article  ADS  Google Scholar 

  6. K.V. Hovhannisyan, M. Perarnau-Llobet, M. Huber, A. Acín, Phys. Rev. Lett. 111, 240401 (2013). https://doi.org/10.1103/PhysRevLett.111.240401

  7. F.C. Binder, S. Vinjanampathy, K. Modi, J. Goold, New J. Phys. 17, 075015 (2015). https://doi.org/10.1088/1367-2630/17/7/075015

    Article  ADS  Google Scholar 

  8. S. Deffner, S. Campbell, J. Phys. A: Math. Theor. 50, 453001 (2017). https://doi.org/10.1088/1751-8121/aa86c6

    Article  ADS  Google Scholar 

  9. J. Werschnik, E.K.U. Gross, J. Phys. B: At. Mol. Opt. Phys. 40, R175 (2007). https://doi.org/10.1088/0953-4075/40/18/R01

    Article  ADS  Google Scholar 

  10. T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V. Giovannetti, G.E. Santoro, Phys. Rev. Lett. 103, 240501 (2009), https://doi.org/10.1103/PhysRevLett.103.240501

  11. I. Brouzos, A.I. Streltsov, A. Negretti, R.S. Said, T. Caneva, S. Montangero, T. Calarco, Phys. Rev. A 92, 062110 (2015). https://doi.org/10.1103/PhysRevA.92.062110

    Article  ADS  Google Scholar 

  12. D. Ferraro, M. Campisi, G.M. Andolina, V. Pellegrini, M. Polini, Phys. Rev. Lett. 120, 117702 (2018). https://doi.org/10.1103/PhysRevLett.120.117702

    Article  ADS  Google Scholar 

  13. N. Friis, M. Huber, Quantum 2, 61 (2017). https://doi.org/10.22331/q-2018-04-23-61

  14. T.P. Le, J. Levinsen, K. Modi, M.M. Parish, F.A. Pollock, Phys. Rev. A 97, 022106 (2018). https://doi.org/10.1103/PhysRevA.97.022106

    Article  ADS  Google Scholar 

  15. A.E. Allahverdyan, R. Balian, T.M. Nieuwenhuizen, Europhys. Lett. 67, 565 (2004). https://doi.org/10.1209/epl/i2004-10101-2

    Article  ADS  Google Scholar 

  16. G. Francica, J. Goold, F. Plastina, M. Paternostro, npj Quantum Inf. 3, 12 (2017). https://doi.org/10.1038/s41534-017-0012-8

  17. W. Pusz, S.L. Woronowicz, Commun. Math. Phys. 58, 273 (1978). https://doi.org/10.1007/BF01614224

    Article  ADS  Google Scholar 

  18. A. Lenard, J. Stat. Phys. 19, 575 (1978). https://doi.org/10.1007/BF01011769

    Article  ADS  Google Scholar 

  19. G.L. Giorgi, S. Campbell, J. Phys. B: At. Mol. Opt. Phys. 48, 035501 (2015). https://doi.org/10.1088/0953-4075/48/3/035501

    Article  ADS  Google Scholar 

  20. S. Deffner, E. Lutz, J. Phys. A: Math. Theor. 46, 335302 (2013). https://doi.org/10.1088/1751-8113/46/33/335302

    Article  Google Scholar 

  21. I. Bengtsson, K. Zyczkowski, Geometry of Quantum States : An Introduction to Quantum Entanglement (Cambridge University Press, Cambridge, 2008), p. 419. https://doi.org/10.1142/S1230161208000080

  22. S. Campbell, S. Deffner, Phys. Rev. Lett. 118, 100601 (2017). https://doi.org/10.1103/PhysRevLett.118.100601

    Article  ADS  Google Scholar 

  23. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001). https://doi.org/10.1103/PhysRevLett.88.017901

  24. Y.A. Pashkin, O. Astafiev, T. Yamamoto, Y. Nakamura, J.S. Tsai, Quantum Inf. Process. 8, 55 (2009). https://doi.org/10.1007/s11128-009-0101-5

    Article  Google Scholar 

  25. X. Wang, S. Vinjanampathy, F.W. Strauch, K. Jacobs, Phys. Rev. Lett. 110, 157207 (2013). https://doi.org/10.1103/PhysRevLett.110.157207

    Article  ADS  Google Scholar 

  26. S.J. Glaser, U. Boscain, T. Calarco, C.P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, F.K. Wilhelm, Eur. Phys. J. D 69, 279 (2015). https://doi.org/10.1140/epjd/e2015-60464-1

    Article  ADS  Google Scholar 

  27. N. Suri, F.C. Binder, B. Muralidharan, S. Vinjanampathy (2017). https://doi.org/10.1140/epjst/e2018-00125-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Campaioli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Campaioli, F., Pollock, F.A., Vinjanampathy, S. (2018). Quantum Batteries. In: Binder, F., Correa, L., Gogolin, C., Anders, J., Adesso, G. (eds) Thermodynamics in the Quantum Regime. Fundamental Theories of Physics, vol 195. Springer, Cham. https://doi.org/10.1007/978-3-319-99046-0_8

Download citation

Publish with us

Policies and ethics