Skip to main content

Mathematical Learning and Its Difficulties in the Middle European Countries

  • Chapter
  • First Online:
International Handbook of Mathematical Learning Difficulties

Abstract

Some children have severe and persistent difficulties with mathematics and are resistant to instruction. In this case, they are labelled as individuals with mathematical learning disabilities (MLD). In this chapter, the prevalence of MLD and the criteria used to define MLD in the UK, Germany and Belgium are described. Moreover, an introduction on the big picture and the PISA and TIMMS results as well as information on the educational policies is given. Finally the chapter elaborates on theories and educational practices and the role of research guiding practice in the Middle European countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barbaresi, W. J., Katusic, S. K., Colligan, R. C., Weaver, A. L., & Jacobsen, S. J. (2005). Learning disorder: Incidence in a population-based birth cohort, 1976–82, Rochester, Minn. Ambulatory Pediatrics, 5, 281–289.

    Article  Google Scholar 

  • Baten, E., & Desoete, A. (2016). Motivation and well-being in (a)typical numerical skills. Poster (genomineerd met de Jeannette Klingner posterprijs) at the 40th annual IARLD conference (28–30 June 2016) Texas.

    Google Scholar 

  • Baten, E., Desoete, A., Van de Velde, M.C., & Hantson, E. (2016). Bringing the gap between cognition and emotion in (a)typical numerical skills. Paper EARLI sig 15 conference on cognition, socio-emotional function and the environment: Bridging the divide. Leuven 29–30 August 2016.

    Google Scholar 

  • Baten, E., Praet, M., & Desoete, A. (2017). The relevance and efficacy of metacognition for instructional design in the domain of mathematics. ZDM, 851. https://doi.org/10.1007/s11858-017-0851-y

    Article  Google Scholar 

  • BIS. (2011). BIS research paper 57: Skills for life survey headline findings. London: Department of Business, Innovation and Skills.

    Google Scholar 

  • Butterworth, B., Sashank, S., & Laurillard, D. (2011). Dyscalculia: From brain to education. Science, 332, 1049–1053. https://doi.org/10.1126/science.1201536

    Article  Google Scholar 

  • Bynner, J., & Parsons, S. (1997). Does numeracy matter? London: Basic Skills Agency.

    Google Scholar 

  • Byrnes, J. P., & Wasik, B. A. (2009). Factors predictive of mathematics achievement in kindergarten, first and third grades: An opportunity–propensity analysis. Contemporary Educational Psychology, 34, 167–183. https://doi.org/10.1016/j.cedpsych.2009.01.002

    Article  Google Scholar 

  • Cappelletti, M., Butterworth, B., & Kopelman, M. (2012). Numeracy skills in patients with degenerative disorders and focal brain lesions: A neuropsychological investigation. Neuropsychology, 26, 1–19.

    Article  Google Scholar 

  • Ceulemans, A., Baten, E., Loeys, T., Hoppenbrouwers, K., Titeca, D., Rousseau, S., & Desoete, A. (2017). The relative importance of parental numerical opportunities, prerequisite knowledge and parent involvement as predictors for early math achievement in young children. Interdisciplinary Education and Psychology, 1(1):6. http://riverapublications.com/assets/files/pdf_files/the-relative-importance-of-parental-numerical-opportunitiesprerequisite- knowledge-and-parent-involv.pdf

    Google Scholar 

  • Ceulemans, A., Titeca, D., Loeys, T., Hoppenbrouwers, K., Rousseau, S., & Desoete, A. (2014). The sense of small number discrimination: The predictive value in infancy and toddlerhood for numerical competencies in kindergarten. Learning and Individual Differences, 39, 150–157. https://doi.org/10.1016/j.lindif.2015.03.009

    Article  Google Scholar 

  • Cowan, R., Donlan, C., Shepherd, D. L., Cole-Fletcher, R., Saxton, M., & Hurry, J. (2011). Basic calculation proficiency and mathematics achievement in elementary school children. Journal of Educational Psychology, 103, 786–803.

    Article  Google Scholar 

  • De Weerdt, F., Desoete, A., & Roeyers, H. (2013). Working memory in children with reading and/or mathematical disabilities. Journal of Learning Disabilities, 46, 461–472.

    Article  Google Scholar 

  • Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120.

    Google Scholar 

  • Delazer, M. (2003). Neuropsychological findings on conceptual knowledge of arithmetic. In A. Baroody & A. Dowker (Eds.), The development of arithmetical concepts and skills (pp. 385–407). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Desoete, A., & Baten, E. (2017). Indicators for a specific learning disorder in mathematics or dyscalculia in toddlers and in kindergarten children. Belgian Journal of Paediatrics, 19(2), 117–120.

    Google Scholar 

  • Desoete, A., Ceulemans, A., De Weerdt, F., & Pieters, S. (2012). Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? British Journal of Educational Psychology, 82, 64–81. https://doi.org/10.1348/2044-8279.002002

    Article  Google Scholar 

  • Desoete, A., Praet, M., Titeca, D., & Ceulemans, A. (2013). Cognitive phenotype of mathematical learning disabilities: What can we learn from siblings? Research in Developmental Disabilities, 34, 404–412. https://doi.org/10.1016/j.ridd.2012.08.022

    Article  Google Scholar 

  • Desoete, A., Roeyers, H., & De Clercq, A. (2004). Children with mathematics learning disabilities in Belgium. Journal of Learning Disabilities, 37, 50–61.

    Article  Google Scholar 

  • Dix, A., & van der Meer, E. (2015). Arithmetic and algebraic problem solving and resource allocation: The distinct impact of fluid and numerical intelligence. Psychophysiology, 52(4), 544–554. https://doi.org/10.1111/psyp.12367

    Article  Google Scholar 

  • Dowker, A. (2001). Numeracy recovery: A pilot scheme for early intervention with young children with numeracy difficulties. Support for Learning, 16, 6–10.

    Article  Google Scholar 

  • Dowker, A. (2004). What works for children with mathematical difficulties? London: DfES.

    Google Scholar 

  • Dowker, A. (2005). Individual differences in arithmetic: Implications for psychology, neuroscience and education. Hove, UK: Psychology Press, Chapter 10.

    Book  Google Scholar 

  • Dowker, A. (2009). What works for children with mathematical difficulties? The effectiveness of intervention schemes. London: DCSF.

    Google Scholar 

  • Dowker, A. (2016). The componential nature of arithmetic: Implications for interventions for children with arithmetical difficulties. Paper given at EARLI SIG 15 conference, Leuven, August 29th, 2016.

    Google Scholar 

  • Dowker, A., & Sigley, G. (2010). Targeted interventions for children with arithmetical difficulties. British Journal of Educational Psychology, II, 7, 65–81.

    Article  Google Scholar 

  • Duncan, G. J., & Magnuson, K. (2009). The nature and impact of early achievement skills, attention and behavior problems. Presented at the Russel Sage Foundation conference on social inequality and educational outcomes, November 19–20.

    Google Scholar 

  • Dunn, S., Matthews, L., & Dowrick, N. (2010). Numbers count: Developing a national approach to intervention. In I. Thompson (Ed.), Issues in teaching numeracy in primary schools (pp. 224–234). Maidenhead, UK: Open University Press.

    Google Scholar 

  • Earl, S. (2003). Can the use of ‘RM Maths’ primary software contribute to the inclusion of year 7 and 8 students with communication disorders and a facility for these students within a mainstream secondary school? University of Sussex Institute of Education: MA thesis.

    Google Scholar 

  • Ehlert, A., & Fritz, A. (2013). Evaluation of a math training for children with learning difficulties. South African Journal of Childhood Education, 3, 117–141.

    Article  Google Scholar 

  • Ennemoser, M., Sinner, D., & Krajewski, K. (2015). Kurz-und langfristige Effekte einer entwicklungsorientierten Mathematikförderung bei Erstklässlern mit drohender Rechenschwäche. Lernen und Lernstörungen, 4, 43–59.

    Article  Google Scholar 

  • Fischbach, A., Schuchardt, K., Brandenburg, J., Klesczewski, J., Balke-Melcher, C., Schmidt, C., et al. (2013). Prävalenz von Lernschwächen und Lernstörungen: Zur Bedeutung der Diagnosekriterien. Lernen und Lernstörungen, 2, 65–76.

    Article  Google Scholar 

  • Fuchs, L. S., Fuchs, D., Compton, D. L., Bryant, J. D., Hamlett, C. L., & Seethaler, P. M. (2007). Mathematics screening and progress monitoring at first grade: Implications for responsiveness to intervention. Exceptional Children, 73, 311–330.

    Article  Google Scholar 

  • Fuchs, L. S., Fuchs, D., & Prentice, K. (2004). Responsiveness to mathematical problem-solving instruction: Comparing students at risk of mathematics disability with and without risk of reading disability. Journal of Learning Disabilities, 37, 293–306.

    Article  Google Scholar 

  • Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37, 4–15.

    Article  Google Scholar 

  • Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development, 78, 1343–1359.

    Article  Google Scholar 

  • Gerlach, M., Fritz, A., & Leutner, D. (2013). MARKO – T: Mathematik und Rechenkonzepte im Vorschul-und frühen Grundschulalter – Training. Göttingen, Germany: Hogrefe.

    Google Scholar 

  • Gifford, S., & Rockliffe, F. (2012). Mathematics difficulties: Does one approach fit all? Research in Mathematics Education, 14(1), 16.

    Article  Google Scholar 

  • Gillham, B., & Hesse, K. (2001). Basic number screening test: National numeracy strategy edition: Forms A & B, for ages 7 to 12 years (3rd ed.). London: Hodder Education.

    Google Scholar 

  • Gross, J. (2007). Supporting children with gaps in their mathematical understanding. Educational and Child Psychology, 24, 146–156.

    Google Scholar 

  • Hasselhorn, M., & Linke-Hasselhorn, K. (2013). Fostering early numerical skills at school start in children at risk for mathematical achievement problems: A small sample size training study. International Education Studies, 6, 213–220.

    Article  Google Scholar 

  • Hasselhorn, M., & Schuchardt, K. (2006). Lernstörungen. Eine kritische Skizze zur Epidemiologie. Kindheit und Entwicklung, 15, 208–215. https://doi.org/10.1026/0942-5403.15.4.208

    Article  Google Scholar 

  • Holmes, W., & Dowker, A. D. (2013). Catch up numeracy: A targeted intervention for children who are low attaining in mathematics. Research in Mathematics Education, 15, 249–265.

    Article  Google Scholar 

  • Jordan, J. A., Mulhern, G., & Wylie, J. (2009). Individual differences in trajectories of arithmetical development in typically achieving 5–7-year-olds. Journal of Experimental Child Psychology, 103, 455–468.

    Article  Google Scholar 

  • Krajewski, K., Nieding, G., & Schneider, W. (2007). Mengen, zählen, Zahlen. Die Welt der Mathematik verstehen (MZZ) [Quantities, counting, numbers. Understanding the world of mathematics]. Berlin, Germany: Cornelsen.

    Google Scholar 

  • Krajewski, K., & Simanowski, S. (2016). Entwicklungsorientierte Prävention von und Intervention bei Rechenschwäche mit “Mengen, zählen, Zahlen” (MZZ). In M. Hasselhorn & W. Schneider (Eds.), Förderprogramme für Vor-und Grundschule. Test & Trends, N.F. 14 (pp. 49–67). Göttingen, Germany: Hogrefe.

    Google Scholar 

  • Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9-year-old students. Cognition, 93, 99–125. https://doi.org/10.1016/j.cognition.2003.11.004

    Article  Google Scholar 

  • Mazzocco, M. M. M., Devlin, K. T., & McKenney, S. J. (2008). Is it a fact? Timed arithmetic performance of children with mathematical learning disabilities (MLD) varies as a function of how MLD is defined. Developmental Neuropsychology, 33, 318–344.

    Article  Google Scholar 

  • Meirsschaut, M., Monsecour, F., & Wilssens, M. (2015). Universeel ontwerp in de klas en op school op-stap naar redelijke aanpassingen https://www.arteveldehogeschool.be/sites/default/files/1.universeel_ontwerp_in_de_klas_en_op_school._op-stap_naar_redelijke_aanpassingen.pdf

    Google Scholar 

  • Moeller, K., Martignon, L., Wessolowski, S., & Nuerk, H.-C. (2011). Effects of finger counting on numerical development? The opposing views of neurocognition and mathematics education. Frontiers in Psychology, 2(328). https://doi.org/10.3389/fpsyg.2011.00328

  • Mussolin, C., Mejias, S., & Noël, M. P. (2010). Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, 115, 10–25.

    Article  Google Scholar 

  • Noel, M. P. (2001). Numerical cognition. In R. Brenda (Ed.), The handbook of cognitive neuropsychology. What deficits reveal about the human mind (pp. 495–518). London: Psychology Press, Tylor & Frances.

    Google Scholar 

  • Parsons, S., & Bynner, J. (2005). Does numeracy matter more? London: NRDC.

    Google Scholar 

  • Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., et al. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116, 33–41.

    Article  Google Scholar 

  • Pieters, S., Roeyers, H., Rosseel, Y., Van Waelvelde, H., & Desoete, A. (2015). Identifying subtypes among children with developmental coordination disorder and mathematical learning disabilities, using model-based clustering. Journal of Learning Disabilities, 48(1), 83–95. https://doi.org/10.1177/0022219413491288

    Article  Google Scholar 

  • Praet, M., Titeca, D., Ceulemans, A., & Desoete, A. (2013). Language in the prediction of arithmetics in kindergarten and grade 1. Learning and Individual Differences, 27, 90–96. https://doi.org/10.1016/j.lindif.2013.07.003

    Article  Google Scholar 

  • Rousselle, L., & Noël, M. P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102, 361–395.

    Article  Google Scholar 

  • Russell, R., & Ginsburg, H. P. (1984). Cognitive analysis of children’s mathematical difficulties. Cognition and Instruction, 1, 217–244.

    Article  Google Scholar 

  • Schmithorst, V. J., & Brown, R. D. (2004). Empirical validation of the triple-code model of numerical processing for complex math operations using functional MRI and group independent component analysis of the mental addition and subtraction of fractions. NeuroImage, 22, 1414–1420.

    Article  Google Scholar 

  • Stanescu-Cosson, R., Pinel, P., Van de Moortele, P. F., Le Bihan, D., Cohen, L., & Dehaene, S. (2000). Understanding dissociations in dyscalculia: A brain-imaging study of the impact of number size on the cerebral networks for exact and approximate calculation. Brain, 123, 2240–2255.

    Article  Google Scholar 

  • Stock, P., Desoete, A., & Roeyers, H. (2010). Detecting children with arithmetic disabilities from kindergarten: Evidence from a 3-year longitudinal study on the role of preparatory arithmetic abilities. Journal of Learning Disabilities, 43, 250–268. https://doi.org/10.1177/0022219409345011

    Article  Google Scholar 

  • Sturman, L. (2015). What is there to learn from international surveys of mathematical achievement? In R. Cohen Kadosh & A. Dowker (Eds.), Oxford handbook of numerical cognition (pp. 430–444). Oxford, UK: Oxford University Press.

    Google Scholar 

  • TIMMS. (2015). http://timss2015.org

  • Torgerson, C. J., Wiggins, A., Torgerson, D. J., Ainsworth, H., Barmby, P., Hewitt, C., et al. (2011). Every child counts: The independent evaluation executive summary. London: Department for Education (DfE).

    Google Scholar 

  • Van Eimeren, L., Grabner, R. H., Koschutnik, K., Reishofer, G., Ebner, F., & Ansari, D. (2010). Structure-function relationships underlying calculation: A combined diffusion tensor imaging and fMRI study. NeuroImage, 52, 358–363.

    Article  Google Scholar 

  • Vanbinst, K., Ghesquière, P., & De Smedt, B. (2015). Does numerical processing uniquely predict first graders’ future development of single-digit arithmetic? Learning and Individual Differences, 37, 153–160. https://doi.org/10.1016/j.lindif.2014.12.004

    Article  Google Scholar 

  • Warrington, E. K. (1982). The fractionation of arithmetical skills: A single case study. Quarterly Journal of Experimental Psychology, 34A, 31–51.

    Article  Google Scholar 

  • Williams, P. (2008). Independent review of mathematics teaching in early years settings and primary schools. London: Department for Children, Schools and Families.

    Google Scholar 

  • Wilson, A., Andrew, S. G., Struthers, H., Rowe, V., Bogdanovic, R., & Wald, K. (2015). Dyscalculia and dyslexia in adults: Cognitive bases of comorbidity. Learning and Individual Differences, 37, 118–132.

    Article  Google Scholar 

  • Wilson, A., Revkin, S. K., Cohen, D., Cohen, L., & Dehaene, S. (2006). An open trial assessment for remediation of dyscalculia. Behavioral and Brain Functions, 2, 20.

    Article  Google Scholar 

  • Wright, R. J., Martland, J., & Stafford, A. (2006). Early numeracy: Assessment for teaching and intervention (2nd ed.). London: Paul Chapman.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annemie Desoete .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Desoete, A., Dowker, A., Hasselhorn, M. (2019). Mathematical Learning and Its Difficulties in the Middle European Countries. In: Fritz, A., Haase, V.G., Räsänen, P. (eds) International Handbook of Mathematical Learning Difficulties. Springer, Cham. https://doi.org/10.1007/978-3-319-97148-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97148-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97147-6

  • Online ISBN: 978-3-319-97148-3

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics