Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1097))

Abstract

Tumor cell metastasis through blood circulation is a complex process and is one of the great challenges in cancer research as metastatic spread is responsible for ∼90% of cancer-related mortality. Tumor cell intravasation into, arrest and adhesion at, and extravasation from the microvessel walls are critical steps in metastatic spread. Understanding these steps may lead to new therapeutic concepts for tumor metastasis. Vascular endothelium forming the microvessel wall and the glycocalyx layer at its surface are the principal barriers to and regulators of the material exchange between circulating blood and body tissues. The cleft between adjacent endothelial cells is the principal pathway for water and solute transport through the microvessel wall in health. Recently, this cleft has been found to be the location for tumor cell adhesion and extravasation. The blood-flow-induced hydrodynamic factors such as shear rates and stresses, shear rate and stress gradients, as well as vorticities, especially at the branches and turns of microvasculatures, also play important roles in tumor cell arrest and adhesion. This chapter therefore reports the current advances from in vivo animal studies and in vitro culture cell studies to demonstrate how the endothelial integrity or microvascular permeability, hydrodynamic factors, microvascular geometry, cell adhesion molecules, and surrounding extracellular matrix affect critical steps of tumor metastasis in the microcirculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achen MG, Stacker SA (2008) Molecular control of lymphatic metastasis. Ann N Y Acad Sci 1131:225–234

    Article  CAS  PubMed  Google Scholar 

  • Adamson RH, Clough G (1992) Plasma proteins modify the endothelial cell glycocalyx of frog mesenteric microvessels. J Physiol 445:473–486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adamson RH, Lenz JF, Zhang X, Adamson GN, Weinbaum S, Curry FE (2004) Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J Physiol 557:889–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arkill KP, Knupp C, Michel CC, Neal CR, Qvortrup K, Rostgaard J, Squire JM (2011) Similar endothelial glycocalyx structures in microvessels from a range of mammalian tissues: evidence for a common filtering mechanism? Biophys J 101:1046–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacac M, Stamenkovic I (2008) Metastatic cancer cell. Annu Rev Pathol 3:221–247

    Article  CAS  PubMed  Google Scholar 

  • Bates DO, Heald RI, Curry FE, Williams B (2001) Vascular endothelial growth factor increases Rana vascular permeability and compliance by different signalling pathways. J Physiol 533(Pt. 1):263–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berman AT, Thukral AD, Hwang WT, Solin LJ, Vapiwala N (2013) Incidence and patterns of distant metastases for patients with early-stage breast cancer after breast conservation treatment. Clin Breast Cancer 13:88–94

    Article  PubMed  Google Scholar 

  • Betteridge KB, Arkill KP, Neal CR, Harper SJ, Foster RR, Satchell SC, Bates DO, Salmon AHJ (2017) Sialic acids regulate microvessel permeability, revealed by novel in vivo studies of endothelial glycocalyx structure and function. J Physiol 595(15):5015–5035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner W, Langer P, Oesch F, Edgell CJ, Wieser RJ (1995) Tumor cell-endothelium adhesion in an artificial venule. Anal Biochem 225:213–219

    Article  CAS  PubMed  Google Scholar 

  • Bucci M, Roviezzo F, Posadas I, Yu J, Parente L (2005) Endothelial nitric oxide synthase activation is critical for vascular leakage during acute inflammation in vivo. Proc Natl Acad Sci U S A 102:904–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bundgaard M (1984) The three-dimensional organization of tight junctions in a capillary endothelium revealed by serial-section electron microscopy. J Ultmstruct Res 88:1–17

    Article  CAS  Google Scholar 

  • Cai B, Fan J, Zeng M, Zhang L, Fu BM (2012) Adhesion of malignant mammary tumor cell MDA-MB-231 to microvessel wall increases microvascular permeability via degradation of endothelial surface glycocalyx. J of Appl Physiol 13(7):1141–1153

    Article  CAS  Google Scholar 

  • Cancel LM, Fitting A, Tarbell JM (2007) In vitro study of LDL transport under pressurized (convective) conditions. Am J Phys 293:H126–H132

    CAS  Google Scholar 

  • CDC Report (2015) Number of deaths for leading causes of death

    Google Scholar 

  • Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572

    Article  CAS  PubMed  Google Scholar 

  • Chen MB, Whisler JA, Jeon JS, Kamm RD (2013) Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integr Biol (Camb) 5:1262–1271

    Article  CAS  Google Scholar 

  • Chen MB, Whisler JA, Fröse J, Yu C, Shin Y, Kamm RD (2017) On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics. Nat Protoc 12(5):865–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi CW, Rezwanuddin Ahmed AH, Dereli-Korkut Z, Wang S (2016) Microfluidic cell chips for high throughput drug screening. Bioanalysis 8(9):921–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu JJ, Chen LJ, Lee PL, Lee CI, Lo LW (2003) Shear stress inhibits adhesion molecule expression in vascular endothelial cells induced by coculture with smooth muscle cells. Blood 101:2667–2674

    Article  CAS  PubMed  Google Scholar 

  • Chotard-Ghodsnia R, Haddad O, Leyrat A, Drochon A, Verdier C, Duperray A (2007) Morphological analysis of tumor cell/endothelial cell interactions under shear flow. J Biomech 40:335–344

    Article  PubMed  Google Scholar 

  • Cinamon G, Alon R (2003) A real time in vitro assay for studying leukocyte transendothelial migration under physiological flow conditions. J Immunol Methods 273:53–62

    Article  CAS  PubMed  Google Scholar 

  • Clark AM, Wheeler SE, Young CL, Stockdale L, Shepard Neiman J, Zhao W, Stolz DB, Venkataramanan R, Lauffenburger D, Griffith L, Wells A (2016) A liver microphysiological system of tumor cell dormancy and inflammatory responsiveness is affected by scaffold properties. Lab Chip 17(1):156–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke JP, Stamler J, Andon N, Davies PF, McKinley G (1990) Flow stimulates endothelial cells to release a nitrovasodilator that is potentiated by reduced thiol. Am J Phys 259:H804–H812

    CAS  Google Scholar 

  • van den Berg BM, Vink H, Spaan JA (2003) The endothelial glycocalyx protects against myocardial edema. Circ Res 92:592–594

    Article  CAS  PubMed  Google Scholar 

  • Dereli-Korkut Z, Akaydin D, Ahmed AHR, Jiang X, Wang S (2014) Three dimensional microfluidic cell arrays for ex vivo drug screening with mimicked vascular flow. Anal Chem 86(6):2997–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drenckhahn D, Ness W (1997) The endothelial contractile cytoskeleton. In: Born GVR, Schwartz CJ (eds) Vascular endothelium: physiology, pathology and therapeutic opportunities. Schattauer, Stuttgart, Gennany, pp 1–15

    Google Scholar 

  • Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146:1029–1039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Earley S, Plopper GE (2006) Disruption of focal adhesion kinase slows transendothelial migration of AU-565 breast cancer cells. Biochem Biophys Res Commun 350:405–412

    Article  CAS  PubMed  Google Scholar 

  • Ebong EE, Macaluso FP, Spray DC, Tarbell JM (2011) Imaging the endothelial glycocalyx in vitro by rapid freezing/freeze substitution transmission electron microscopy. Arterioscler Thromb Vasc Biol 31(8): 1908–1915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J, Fu BM (2016) Quantification of malignant breast cancer cell MDA-MB-231 transmigration across brain and lung microvascular endothelium. Annals of Biomed Eng 44(7):2189–2201

    Article  Google Scholar 

  • Fan J, Cai B, Zeng M, Hao Y, Giancotti FG, Fu BM (2011) Integrin β4 signaling promotes mammary tumor cell adhesion to brain microvascular endothelium by inducing ErbB2-medicated secretion of VEGF. Ann of Biomed Eng 39(8):2223–2241

    Article  Google Scholar 

  • Feng D, Nagy JA, Payne K, Hammel I, Dvorak HF, Dvorak AM (1999) Pathways of macromolecular extravasation across microvascular endothelium in response to VPF/VEGF and other vasoactive mediators. Microcirculation 6(1):23–44

    Article  CAS  PubMed  Google Scholar 

  • Ferreira MM, Ramani VC, Jeffrey SS (2016) Circulating tumor cell technologies. Mol Oncol 10(3):374–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fidler IJ (2011) The biology of cancer metastasis. Semin Cancer Biol 21:71

    Article  PubMed  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Forstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33:829–837

    Article  PubMed  CAS  Google Scholar 

  • Fu BM, Shen S (2003) Structural mechanisms of vascular endothelial growth factor (VEGF) on microvessel permeability. Am J Phys 284(6):H2124–H2135

    CAS  Google Scholar 

  • Fu BM, Shen S (2004) Acute VEGF effect on solution permeability of mammalian microvessels in vivo. Microvasc Res 68(1):51–62

    Article  CAS  PubMed  Google Scholar 

  • Fu BM, Tarbell JM (2013) Mechano-sensing and transduction by endothelial surface glycocalyx: composition, structure, and function. Wiley Interdiscip Rev Syst Biol Med 5:381–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu BM, Weinbaum S, Tsay RY, Curry FE (1994) A junction-orifice-fiber entrance layer model for capillary permeability: application to frog mesenteric capillaries. ASME J Biomech Eng 116:502–513

    Article  CAS  Google Scholar 

  • Fu BM, Chen B, Chen W (2003) An electrodiffusion model for effects of surface glycocalyx layer on microvessel solute permeability. Am J Phys 284: H1240–H1250

    CAS  Google Scholar 

  • Fu BM, Shen S, Chen B (2006) Structural mechanisms in the abolishment of VEGF-induced microvascular hyperpermeability by cAMP. ASME J. Biomech. Eng. 128(3):313–328

    Google Scholar 

  • Fu BM, Yang J, Shen S, Cai B, Fan J, Zhang L, Yen WY, Zeng M (2015) Reinforcing endothelial junctions prevents microvessel permeability increase and tumor cell adhesion in microvessels in vivo. Scientific Reports Oct 28

    Google Scholar 

  • Gassmann P, Kang ML, Mees ST, Haier J (2010) In vivo tumor cell adhesion in the pulmonary microvasculature is exclusively mediated by tumor cell-endothelial cell interaction. BMC Cancer 10(177)

    Google Scholar 

  • Giancotti FG (2007) Targeting integrin beta4 for cancer and anti-angiogenic therapy. Trends Pharmacol Sci 28:506–511

    Article  CAS  PubMed  Google Scholar 

  • Giavazzi R, Foppolo M, Dossi R, Remuzzi A (1993) Rolling and adhesion of human tumor cells on vascular endothelium under physiological flow conditions. J Clin Invest 92:3038–3044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glinskii OV, Huxley VH, Glinsky GV, Pienta KJ, Raz A, Glinsky VV (2005) Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs. Neoplasia 7(5):522–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Kas J, Ulvick S, Bilby C (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88(5):3689–3698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo W, Giancotti FG (2004) Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 5:816–826

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Pylayeva Y, Pepe A, Yoshioka T, Muller WJ, Inghirami G, Giancotti FG (2006) Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell 126:489–502

    Article  CAS  PubMed  Google Scholar 

  • Guo P, Cai B, Lei M, Liu Y, Fu BM (2014) Differential arrest and adhesion of tumor cells and microbeads in the microvasculature. Biomech Model Mechanobiol 13:537–550

    Article  PubMed  Google Scholar 

  • Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127:679–695

    Article  CAS  PubMed  Google Scholar 

  • van Hinsbergh VW, Nieuw Amerongen GP (2002) Intracellular signalling involved in modulating human endothelial barrier function. J Anat 200:549–560

    Article  PubMed  PubMed Central  Google Scholar 

  • Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91–100

    Article  PubMed  Google Scholar 

  • Jeon JS, Bersini S, Gilardi M, Dubini G, Charest JL, Moretti M, Kamm RD (2015) Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc Natl Acad Sci U S A 112(1):214–219

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Wong KHK, Khankhel AH, Zeinali M, Reategui E, Phillips MJ, Luo X, Aceto N, Fachin F, Hoang AN, Kim W, Jensen AE, Sequist LV, Maheswaran S, Haber DA, Stott SL, Toner M (2017) Microfluidic isolation of platelet-covered circulating tumor cells. Lab Chip 17(20):3498–3503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    Article  CAS  PubMed  Google Scholar 

  • Khamenehfar A, Li PC (2016) Microfluidic devices for circulating tumor cells isolation and subsequent analysis. Curr Pharm Biotechnol 17(9):810–821

    Article  CAS  PubMed  Google Scholar 

  • Khoo BL, Grenci G, Lim YB, Lee SC, Han J, Lim CT (2018) Expansion of patient-derived circulating tumor cells from liquid biopsies using a CTC microfluidic culture device. Nat Protoc 13(1):34–58

    Article  CAS  PubMed  Google Scholar 

  • Kielbik M, Szulc I, Brzezinska M, Bednarska K, Przygodzka P (2014) Nitric oxide donors reduce the invasion ability of ovarian cancer cells in vitro. Anti-Cancer Drugs 25:1141–1151

    Article  CAS  PubMed  Google Scholar 

  • Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J, Winkle F (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nature Med 16(1):116–122

    Article  CAS  PubMed  Google Scholar 

  • Kong L, Dunn GD, Keefer LK, Korthuis RJ (1996) Nitric oxide reduces tumor cell adhesion to isolated rat postcapillary venules. Clin Exp Metastasis 14: 335–343

    Article  CAS  PubMed  Google Scholar 

  • Kong J, Luo Y, Jin D, An F, Zhang W, Liu L, Li J, Fang S, Li X, Yang X, Lin B, Liu T (2016) A novel microfluidic model can mimic organ-specific metastasis of circulating tumor cells. Oncotarget 7(48):78421–78432

    Article  PubMed  PubMed Central  Google Scholar 

  • Koop S, MacDonald IC, Luzzi K, Schmidt EE, Morris VL, Grattan M, Khokha R, Chambers AF, Groom AC (1995) Fate of melanoma cells entering the microcirculation: over 80% survive and extravasate. Cancer Res 55(12):2520–2523

    CAS  PubMed  Google Scholar 

  • Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84: 359–369

    Article  CAS  PubMed  Google Scholar 

  • Lee TH, Avraham HK, Jiang S, Avraham S (2003) Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. J Biol Chem 278: 5277–5284

    Article  CAS  PubMed  Google Scholar 

  • Li LM, Kilbourn RG, Adams J, Fidler IJ (1991) Role of nitric oxide in lysis of tumor cells by cytokine-activated endothelial cells. Cancer Res 51:2531–2535

    CAS  PubMed  Google Scholar 

  • Li QS, Lee GY, Ong CN, Lim CT (2008) AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 374(4):13–609

    Article  CAS  Google Scholar 

  • Li G, Simon M, Shi Z, Cancel L, Tarbell JM, Morrison B, Fu BM (2010) Permeability of endothelial and astrocyte cocultures: in vitro blood-brain barrier models for drug delivery. Ann of Biomed Eng 38(8):2499–2511

    Article  Google Scholar 

  • Liang S, Slattery MJ, Dong C (2005) Shear stress and shear rate differentially affect the multi-step process of leukocyte-facilitated melanoma adhesion. Exp Cell Res 310(2):282–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litjens SH, de Pereda JM, Sonnenberg A (2006) Current insights into the formation and breakdown of hemidesmosomes. Trends Cell Biol 16:376–383

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Mirc D, Fu BM (2008) Mechanical mechanisms of thrombosis in intact bent microvessels of rat mesentery. J Biomech 41:2726–2734

    Article  PubMed  Google Scholar 

  • Liu Z, Han X, Zhou Q, Chen R, Fruge S, Jo MC, Ma Y, Li Z, Yokoi K, Qin L (2017) Integrated microfluidic system for gene silencing and cell migration. Adv Biosyst 1(6)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu Y, Yu T, Liang H, Wang J, Xie J (2014) Nitric oxide inhibits hetero-adhesion of cancer cells to endothelial cells: restraining circulating tumor cells from initiating metastatic cascade. Sci Rep 4:4344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luft JH (1966) Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc 25(6):1773–1783

    CAS  PubMed  Google Scholar 

  • Masri FA, Comhair SA, Koeck T, Xu W, Janocha A (2005) Abnormalities in nitric oxide and its derivatives in lung cancer. Am J Respir Crit Care Med 172:597–605

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsumoto K, Nishi K, Kikuchi M, Kadowaki D, Tokutomi Y (2007) Alpha1-acid glycoprotein suppresses rat acute inflammatory paw edema through the inhibition of neutrophils activation and prostaglandin E2 generation. Biol Pharm Bull 30:1226–1230

    Article  CAS  PubMed  Google Scholar 

  • Michel CC, Curry FE (1999) Microvascular permeability. Physiol Reviews 79(3):703–761

    Article  CAS  Google Scholar 

  • Michel CC, Neal CR (1999) Openings through endothelial cells associated with increased microvascular permeability. Microcirculation 6(1):45–62

    Article  CAS  PubMed  Google Scholar 

  • Mierke CT (2008) Role of the endothelium during tumor cell metastasis: is the endothelium a barrier or a promoter for cell invasion and metastasis. J Biophys 2008:183516

    Article  PubMed  CAS  Google Scholar 

  • Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD et al (2005) Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115:44–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moasser MM, Basso A, Averbuch SD, Rosen N (2001) The tyrosine kinase inhibitor ZD1839 (“Iressa”) inhibits HER2-driven signaling and suppresses the growth of HER2-overexpressing tumor cells. Cancer Res 61:7184–7188

    CAS  PubMed  Google Scholar 

  • Mook ORF, Marle J, Vreeling-Sindelarova H, Jongens R, Frederiks WM, Noorden CJK (2003) Visualisation of early events in tumor formation of eGFP-transfected rat colon cancer cells in liver. Hepatology 38:295–304

    Article  PubMed  Google Scholar 

  • Mortensen K, Christensen IJ, Nielsen HJ, Hansen U, Larsson LI (2004) High expression of endothelial cell nitric oxide synthase in peritumoral microvessels predicts increased disease-free survival in colorectal cancer. Cancer Lett 216:109–114

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay D, Nagy JA, Manseau EJ, Dvorak HF (1998) Vascular permeability factor/vascular endothelial growth factor-mediated signaling in mouse mesentery vascular endothelium. Cancer Res 58(6): 1278–1284

    CAS  PubMed  Google Scholar 

  • Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284

    Article  CAS  PubMed  Google Scholar 

  • Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7(5):359–371

    Article  CAS  PubMed  Google Scholar 

  • Pohl U, Herlan K, Huang A, Bassenge E (1991) EDRF-mediated shear-induced dilation opposes myogenic vasoconstriction in small rabbit arteries. Am J Physiol 261:H2016–2023

    Article  CAS  Google Scholar 

  • Qiu H, Orr FW, Jensen D, Wang HH, McIntosh AR et al (2003) Arrest of B16 melanoma cells in the mouse pulmonary microcirculation induces endothelial nitric oxide synthase-dependent nitric oxide release that is cytotoxic to the tumor cells. Am J Pathol 162:403–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflug Arch: Eur J Physiol 454:345–359

    Article  CAS  Google Scholar 

  • Ridnour LA, Thomas DD, Donzelli S, Espey MG, Roberts DD (2006) The biphasic nature of nitric oxide responses in tumor biology. Antioxid Redox Signal 8:1329–1337

    Article  CAS  PubMed  Google Scholar 

  • Roberts WG, Palade GE (1995) Increased microvascular permeability and endothelial enestration induced by vascular endothelial growth factor. J Cell Sci 108:2369–2379

    CAS  PubMed  Google Scholar 

  • Salmon AH, Satchell SC (2012) Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J Pathol 226(4):562–574

    Article  CAS  PubMed  Google Scholar 

  • Salmon AH, Neal CR, Sage LM, Glass CA, Harper SJ, Bates DO (2009) Angiopoietin-1 alters microvascular permeability coefficients in vivo via modification of endothelial glycocalyx. Cardiovasc Res 83(1):24–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scher RL (2007) Role of nitric oxide in the development of distant metastasis from squamous cell carcinoma. Laryngoscope 117:199–209

    Article  CAS  PubMed  Google Scholar 

  • Schluter K, Gassmann P, Enns A, Korb T, Hemping-Bovenkerk A, Holzen J, Haier J (2006) Organ-specific metastatic tumor cell adhesion and extravasation of colon carcinoma cells with different metastatic potential. Am J Pathol 169:1064–1073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shea DJ, Li YW, Stebe KJ, Konstantopoulos K (2017) E-selectin-mediated rolling facilitates pancreatic cancer cell adhesion to hyaluronic acid. FASEB J 31(11):5078–5086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen S, Fan J, Cai B, Lv Y, Zeng M, Hao Y, Giancotti F, Fu BM (2010) Vascular endothelial growth factor enhances mammary cancer cell adhesion to endothelium in vivo. J of Exp Physiology 95:369–379

    Article  CAS  Google Scholar 

  • Shi L, Zeng M, Sun Y, Fu BM (2014) Quantification of blood-brain barrier solute permeability and brain transport by multiphoton microscopy. J Biomech Eng 136:031005

    Article  PubMed  Google Scholar 

  • Slattery MJ, Liang S, Dong C (2005) Distinct role of hydrodynamic shear in leukocyte-facilitated tumor cell extravasation. Am J Phys 288:C831–C839

    Article  CAS  Google Scholar 

  • Squire JM, Chew M, Nneji G, Neal C, Barry J, Michel CC (2001) Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J Struct Biol 136:239–255

    Article  CAS  PubMed  Google Scholar 

  • Steeg PS, Theodorescu D (2008) Metastasis: a therapeutic target for cancer. Nat Clin Pract Oncol 5(4):206–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinbauer M, Guba M, Cernaianu G, Köhl G, Cetto M, Kunz-Schugart LA, Gcissler EK, Falk W, Jauch KW (2003) GFP-transfected tumor cells are useful in examining early metastasis in vivo, but immune reaction precludes long-term development studies in immunocompetent mice. Clin Exp Metastasis 20: 135–141

    Article  CAS  PubMed  Google Scholar 

  • Strell C, Entschladen F (2008) Extravasation of leukocytes in comparison to tumor cells. Cell Commun Signal 6:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Swaminathan V, Mythreye K, O’Brien ET, Berchuck A, Blobe GC, Superfine R (2011) Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res 71(15):5075–5080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tadimety A, Syed A, Nie Y, Long CR, Kready KM, Zhang JX (2017) Liquid biopsy on chip: a paradigm shift towards the understanding of cancer metastasis. Integr Biol (Camb) 23 9(1):22–49

    Article  Google Scholar 

  • Talmadge JE, Fidler IJ (2010) AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70:5649–5669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarbell JM, Pahakis MY (2006) Mechanotransduction and the glycocalyx. J Intern Med 259:339–350

    Article  CAS  PubMed  Google Scholar 

  • Tobler NE, Detmar M (2006) Tumor and lymph node lymphangiogenesis--impact on cancer metastasis. J Leukoc Biol 80:691–696

    Article  CAS  PubMed  Google Scholar 

  • Um E, Oh JM, Granick S, Cho YK (2017) Cell migration in microengineered tumor environments. Lab Chip 17(24):4171–4185

    Article  CAS  PubMed  Google Scholar 

  • Vink H, Duling BR (1996) Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res 79:581–589

    Article  CAS  PubMed  Google Scholar 

  • Wang HH, McIntosh AR, Hasinoff BB, Rector ES, Ahmed N et al (2000) B16 melanoma cell arrest in the mouse liver induces nitric oxide release and sinusoidal cytotoxicity: a natural hepatic defense against metastasis. Cancer Res 60:5862–5869

    Google Scholar 

  • Weber GF (2007) Molecular mechanisms of cancer. Springer, Netherlands

    Google Scholar 

  • Weiss L (1992) Comments on hematogenous metastatic patterns in humans as revealed by autopsy. Clin Exp Metastasis 10:191–199

    Article  CAS  PubMed  Google Scholar 

  • Wirtz DKK, Searson PC (2012) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 11:512

    Article  CAS  Google Scholar 

  • Wyckoff JB, Jones JG, Condeelis JS, Segall JE (2000) A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res 60:2504–2511

    CAS  PubMed  Google Scholar 

  • Xu W, Liu LZ, Loizidou M, Ahmed M, Charles IG (2002) The role of nitric oxide in cancer. Cell Res 12:311–320

    Article  PubMed  Google Scholar 

  • Yan WW, Liu Y, Fu BM (2010) Effects of curvature and cell-cell interaction on cell adhesion in microvessels. Biomech Model Mechanobiol 9:629–640

    Article  CAS  PubMed  Google Scholar 

  • Yan WW, Cai B, Liu Y, Fu BM (2012) Effects of wall shear stress and its gradient on tumor cell adhesion in curved microvessels. Biomech Model Mechanobiol 11(5):641–653. https://doi.org/10.1007/s10237-011-0339-6

    Article  CAS  PubMed  Google Scholar 

  • Yen WY, Cai B, Zeng M, Tarbell JM, Fu BM (2012) Quantification of the endothelial surface glycocalyx on rat and mouse blood vessels. Microvasc Res

    Google Scholar 

  • Yen WY, Cai B, Yang J, Zhang L, Zeng M, Tarbell JM, Fu BM (2015) Endothelial surface glycocalyx can regulate flow-induced endothelial NO production in microvessels in vivo. PLoS One 10(1):e0117133

    Article  PubMed  PubMed Central  Google Scholar 

  • Yudoh K, Matsui H, Tsuji H (1997) Nitric oxide induced by tumor cells activates tumor cell adhesion to endothelial cells and permeability of the endothelium in vitro. Clin Exp Metastasis 15:557–567

    Article  CAS  PubMed  Google Scholar 

  • Zervantonakis IK, Hughes-Alford SK, Charest JL, Condeelis JS, Gertler FB, Kamm RD (2012) Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc Natl Acad Sci U S A 109(34):13515–13520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zeng M, Fu BM (2016a) Inhibition of endothelial nitric oxide synthase decreases breast cancer cell MDA-MB-231 adhesion to intact microvessels under physiological flows. Am J Physiol Heart Circ Physiol 310(11):H1735–H1747

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Fan J, Zeng M, Curry F-RE, John MT, Fu BM (2016b) Sphingosine-1-phosphate (S1P) maintains normal microvascular permeability by preserving endothelial surface glycocalyx (ESG) in intact microvessels. Microcirculation 23(4):301–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zeng M, Fu BM (2017) Sphingosine-1-phosphate reduces adhesion of malignant mammary tumor cells MDA-MB-231 to microvessel walls by protecting endothelialsurface glycocalyx. Cell Mol Biol (Noisy-le-Grand) 63(4):16–22

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSF CBET 0754158, NIH CA153325-01, CA137788-01, and 1UG3TR002151-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingmei M. Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fu, B.M. (2018). Tumor Metastasis in the Microcirculation. In: Fu, B., Wright, N. (eds) Molecular, Cellular, and Tissue Engineering of the Vascular System. Advances in Experimental Medicine and Biology, vol 1097. Springer, Cham. https://doi.org/10.1007/978-3-319-96445-4_11

Download citation

Publish with us

Policies and ethics