Skip to main content

Some Observations on Infinitary Complexity

  • Conference paper
  • First Online:
Sailing Routes in the World of Computation (CiE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10936))

Included in the following conference series:

Abstract

Continuing the study of complexity theory of Koepke’s Ordinal Turing Machines (OTMs) that was done in [CLR], we prove the following results:

  1. 1.

    An analogue of Ladner’s theorem for OTMs holds: That is, there are languages \(\mathcal {L}\) which are NP\(^{\infty }\), but neither P\(^{\infty }\) nor NP\(^{\infty }\)-complete. This answers an open question of [CLR].

  2. 2.

    The speedup theorem for Turing machines, which allows us to bring down the computation time and space usage of a Turing machine program down by an aribtrary positive factor under relatively mild side conditions by expanding the working alphabet does not hold for OTMs.

  3. 3.

    We show that, for \(\alpha <\beta \) such that \(\alpha \) is the halting time of some OTM-program, there are decision problems that are OTM-decidable in time bounded by \(|w|^{\beta }\cdot \gamma \) for some \(\gamma \in \text {On}\), but not in time bounded by \(|w|^{\alpha }\cdot \gamma \) for any \(\gamma \in \text {On}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Multitape OTMs can be simulated by single-tape OTMs quickly enough so that this does not make a difference for Theorem 2, our main result. However, the proofs of Theorem 3 and Corollary 2 both make crucial use of the availability of several tapes.

References

  1. Barwise, J.: Admissible sets and structures. Stud. Log. 37, 297–299 (1975)

    MATH  Google Scholar 

  2. Carl, M.: Randomness and degree theory for infinite time register machines 1. Computability 5, 181–196 (2016)

    Article  MathSciNet  Google Scholar 

  3. Carl, M., Schlicht, P.: Infinite computations with random oracles. Notre Dame J. Form. Log. 58(2), 249–270 (2017)

    Article  MathSciNet  Google Scholar 

  4. Carl, M., Schlicht, P.: Randomness via infinite computation and effective descriptive set theory. J. Symbol. Log. (to appear)

    Google Scholar 

  5. Deolalikar, V., Hamkins, J., Schindler, R.: \(P\ne NP\cap co-NP\) for infinite time turing machines. J. Log. Comput. 15, 577–592 (2005)

    Article  Google Scholar 

  6. Carl, M., Löwe, B., Rin, B.G.: Koepke machines and satisfiability for infinitary propositional languages. In: Kari, J., Manea, F., Petre, I. (eds.) CiE 2017. LNCS, vol. 10307, pp. 187–197. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58741-7_19

    Chapter  MATH  Google Scholar 

  7. Fortnow, L., Gasarch, B.: Two proofs of Ladner’s theorem. Online lecture notes. http://oldblog.computationalcomplexity.org/media/ladner.pdf

  8. Hamkins, J., Lewis, A.: Infinite time turing machines. J. Symbol. Log. 65, 567–604 (2000)

    Article  MathSciNet  Google Scholar 

  9. Hamkins, J.D., Miller, R., Seabold, D., Warner, S.: Infinite time computable model theory. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms, pp. 521–557. Springer, New York (2008). https://doi.org/10.1007/978-0-387-68546-5_20

    Chapter  Google Scholar 

  10. Hromkovic, J.: Theoretische Informatik: Formale Sprachen, Berechenbarkeit, Komplexitätstheorie, Algorithmik, Kommunikation und Kryptographie. Springer, Wiesbaden (2011)

    Book  Google Scholar 

  11. Hamkins, J., Welch, P.: \(P^{f}\ne NP^{f}\) for almost all \(f\). Math. Log. Q. 49(5), 536 (2003)

    Article  MathSciNet  Google Scholar 

  12. Koepke, P., Miller, R.: An enhanced theory of infinite time register machines. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 306–315. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69407-6_34

    Chapter  MATH  Google Scholar 

  13. Koepke, P., Seyfferth, B.: Ordinal machines and admissible recursion theory. Ann. Pure Appl. Log. 160, 310–318 (2009)

    Article  MathSciNet  Google Scholar 

  14. Komjath, P., Totik, V.: Problems and Theorems in Classical Set Theory. Springer, New York (2006). https://doi.org/10.1007/0-387-36219-3

    Book  MATH  Google Scholar 

  15. Löwe, B.: Space bounds for infinitary computation. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J. (eds.) Logical Approaches to Computational Barriers. Lecture Notes in Computer Science, vol. 3988, pp. 319–329. Springer, Berlin (2006). https://doi.org/10.1007/11780342_34

    Chapter  Google Scholar 

  16. Koepke, P., Siders, R.: Computing the recursive truth predicate on ordinal register machines. In: Beckmann, A., et al. (eds.) Logical Approaches to Computational Barriers. Computer Science Report Series, vol. 7, pp. 160–169, Swansea (2006)

    Chapter  Google Scholar 

  17. Koepke, P.: Turing computations on ordinals. Bull. Symb. Log. 11, 377–397 (2005)

    Article  Google Scholar 

  18. Schindler, R.: P \(\ne \) NP for infinite time turing machines. Monatsh. Math. 138, 335–340 (2003)

    Article  Google Scholar 

  19. Welch, P.: Eventually infinite time turing machine degrees: infinite time decidable reals. J. Symb. Log. 65(3), 1193–1203 (2000)

    Article  MathSciNet  Google Scholar 

  20. Koepke, P.: Infinite time register machines. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 257–266. Springer, Heidelberg (2006). https://doi.org/10.1007/11780342_27

    Chapter  Google Scholar 

  21. Winter, J.: Space complexity in Infinite Time Turing Machines. Master’s thesis, Universiteit van Amsterdam (2007)

    Google Scholar 

  22. Winter, J.: Is P \(=\) PSPACE for infinite time turing machines? In: Archibald, M., Brattka, V., Goranko, V., Löwe, B. (eds.) ILC 2007. LNCS (LNAI), vol. 5489, pp. 126–137. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03092-5_10

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Philipp Schlicht for checking our proof of Theorem 2. We also thank our three anonymous referees for a considerable amount of constructive comments on the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merlin Carl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carl, M. (2018). Some Observations on Infinitary Complexity. In: Manea, F., Miller, R., Nowotka, D. (eds) Sailing Routes in the World of Computation. CiE 2018. Lecture Notes in Computer Science(), vol 10936. Springer, Cham. https://doi.org/10.1007/978-3-319-94418-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94418-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94417-3

  • Online ISBN: 978-3-319-94418-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics