Skip to main content

Fate of Organic and Inorganic Pollutants in Paddy Soils

  • Chapter
  • First Online:
Environmental Pollution of Paddy Soils

Abstract

Paddy soils have a heterogenous nature, with complex physico-chemical interactions and varying soil characteristics. Paddy soils remain flooded and are considered as rich sources of nutrients for plant growth. The nutrient levels mostly depend on different management practices, such as fertilizer application, irrigation, and tillage, and the movement of nutrients in the soils. These paddy soils normally show less movement of applied nutrients out of the medium than other soils, because of stagnant water that reduces the mobility rate. Paddy soils can become polluted by anthropogenic practices such as the use of sewage wastewater; industrial wastewater containing heavy metals; fertilizers; and pesticides, and the leakage of petrochemicals. Some natural pollutants can be oxidized by microbial activity, but most pollutants do not undergo biotic and chemical degradation. Inorganic (heavy metals) and organic pollutants (polychlorinated biphenyls, polychlorinated dibenzodioxins, and polychlorinated dibenzofurans) are the major types of pollutants in paddy soils. The numerous organic and inorganic pollutants resulting from anthropogenic activities can remain for long periods in nature and can be transported over long distances. In particular, organic pollutants can be bioaccumulated and biomagnified, thus reaching high levels that can be dangerous for human wellbeing and biological communities. Inorganic pollutants such as the heavy metals Pb, Cr, As, Zn, Cd, Cu, Hg, and Ni cause hazards for human health, for plants, for animals, and for the fertility status of the soil. These heavy metals are common pollutants in paddy soil and they bioaccumulate; in this way the concentrations of these pollutants increase in living systems, owing to their retention rates being higher than their discharge rates in these systems. The fate of these pollutants depends on their bioavailability, degradation by microorganisms, adsorption, desorption, leaching, and runoff. The transport and degradation of these pollutants in paddy soils and groundwater results in contamination. The physico-chemical characteristics of the paddy soil framework; for example, the water content, soil organic matter, presence of clay, and pH, influence the sorption or desorption and degradation of pollutants and also influence leaching to the groundwater and runoff to surface waters. The translocation of natural pesticides in paddy soils depends upon the ionic or neutral behavior of the soil constituents, on the pesticides’ solubility in water, extremity on the substance, and the colloidal nature of the paddy soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriano C (2003) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals, 2nd edn. Springer, New York, p 866

    Google Scholar 

  • Akram R, Amin A, Hashmi MZ, Wahid A, Mubeen M, Hammad HM, Fahad S, Nasim W (2017) Fate of antibiotics in soil. In: Antibiotics and antibiotics resistance genes in soils. Springer, Cham, pp 201–214

    Google Scholar 

  • Alloway BJ (2009) Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health 31:537–548

    Article  CAS  PubMed  Google Scholar 

  • Arao T, Ishikawa M, Murakami S, Abe K, Maejima Y, Makino T (2010) Heavy metal contamination of agricultural soil and countermeasures in Japan. Paddy Water Environ 8:247–257

    Article  Google Scholar 

  • Arias-Estevez M, Lopez-Periago E, Martínez-Carballo E, Simal-Gandara J, Mejuto JC, Garcia-Rio L (2008) The mobility and degradation of pesticides in soilsand the pollution of groundwater resources. Agric Ecosyst Environ 123:247–260

    Article  CAS  Google Scholar 

  • Armitage JM, Gobas FAPC (2007) A terrestrial food-chain bioaccumulation model for POPs. Environ Sci Technol 41:4019–4025

    Article  CAS  PubMed  Google Scholar 

  • Awasthi M, Prakash NB (1997) Persistence of chlorpyrifos in soils under different moisture regimes. Pestic Sci 50:1–4

    Article  CAS  Google Scholar 

  • Baba D, Yasuta T, Yoshida N, Kimura Y, Miyake K, Inoue Y, Toyota K, Katayama A (2007) Anaerobic biodegradation of polychlorinated biphenyls by a microbial consortium originated from uncontaminated paddy soil. World J Microbiol Biotechnol 23:1627–1636

    Article  CAS  Google Scholar 

  • Barriuso E, Calvet R (1992) Soil type and herbicides adsorption. Int J Environ Anal Chem 46:117–128

    Article  CAS  Google Scholar 

  • Barriuso E, Laird DA, Koskinen WC, Dowdy RH (1994) Atrazine desorption from smectites. Soil Sci Soc Am J 58:1632–1638

    Article  CAS  Google Scholar 

  • Basta NT, Ryan JA, Chaney RL (2005) Trace element chemistry in residual-treated soil: key concepts and metal bioavailability. J Environ Qual 34:49–63

    Article  CAS  PubMed  Google Scholar 

  • Beyer A, Biziuk M (2009) Environmental fate and global distribution of polychlorinated biphenyls. Rev Environ Contam Toxicol 201:137–158

    CAS  PubMed  Google Scholar 

  • Bhagure GR, Mirgane SR (2011) Heavy metal concentrations in groundwaters and soils of Thane Region of Maharashtra, India. Environ Monit Assess 173:643–652

    Article  CAS  PubMed  Google Scholar 

  • Borja J, Taleon DM, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation. Process Biochem 40:1999–2013

    Article  CAS  Google Scholar 

  • Briceno G, Palma G, Durán N (2007) Influence of organic amendment on the biodegradation and movement of pesticides. Crit Rev Environ Sci Technol 37:233–271

    Article  CAS  Google Scholar 

  • Bromilow RH, Evans AA, Nicholls PH (1999) Factors affecting degradation rates of five triazole fungicides in two soil types: 1. Laboratory incubations. Pestic Sci 55:1129–1134

    CAS  Google Scholar 

  • Brucher J, Bergstrom L (1997) Temperature dependence of linuron sorption to three different agricultural soils. J Environ Qual 26:1327–1335

    Article  CAS  Google Scholar 

  • Campos MD, Antonangelo JA, Alleoni LRF (2016) Phosphorus sorption index in humid tropical soils. Soil Tillage Res 156:110–118

    Article  Google Scholar 

  • Carpenter DO (1998) Polychlorinated biphenyls and human health. J Occup Med Environ Health 11:291–303

    CAS  Google Scholar 

  • Cea M, Seaman JC, Jara A, Fuentes B, Mora ML, Diez MC (2007) Adsorption behavior of 2,4-dichlorophenol and pentachlorophenol in an allophanic soil. Chemosphere 67:1354–1360

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Yu CN, Shen CF, Tang XJ, Qin ZH, Yang K, Hashmi MZ, Huang RL (2014) Paddy field – a natural sequential anaerobic–aerobic bioreactor for polychlorinated biphenyls transformation. Environ Pollut 190:43–50

    Article  CAS  PubMed  Google Scholar 

  • Chirnside A, Ritter W, Radosevich M (2007) Isolation of a selected microbial consortium from a pesticide-contaminated mix-load site soil capable of degrading the herbicides atrazine and alachlor. Soil Biol Biochem 39:3056–3065

    Article  CAS  Google Scholar 

  • Chu X, Fang H, Pan X, Wang X, Shan M, Feng B, Yu Y (2008) Degradation of chlorpyrifos alone and in combination with chlorothalonil and their effects on soil microbial populations. J Environ Sci 20:464–469

    Article  CAS  Google Scholar 

  • Clausen L, Fabricius I (2002) Atrazine, isoproturon, mecoprop, 2,4-D, and bentazone adsorption onto iron oxides. J Environ Qual 30:858–869

    Article  Google Scholar 

  • Cousins IT, Beck AJ, Jones KC (1999) A review of the processes involved in the exchange of semi-volatile organic compounds (Svoc) across the air-soil interface. Sci Total Environ 228:5–24

    Article  CAS  Google Scholar 

  • Cui YG, Zhu YG, Zhai YH et al (2004) Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ Int 30:785–791

    Article  CAS  PubMed  Google Scholar 

  • D’Amore JJ, Al-Abed SR, Scheckel KG, Ryan JA (2005) Methods for speciation of metals in soils: a review. J Environ Qual 34:1707–1745

    Article  PubMed  CAS  Google Scholar 

  • Daly K, Jeffrey D, Tunney H (2001) The effect of soil type on phosphorus sorption capacity and desorption dynamics in Irish grassland soils. Soil Use Manag 17:12–20

    Article  Google Scholar 

  • Dickson LC, Buzik SC (1993) Health risks of “dioxins”: a review of environmental and toxicological considerations. Vet Hum Toxicol 35:68–77

    CAS  PubMed  Google Scholar 

  • Di-Diego ML, Eggert JA, Pruitt RH, Larcom L (2005) Unmasking the truth behind endocrine disrupters. Nurs Pract 30:54–59

    Article  Google Scholar 

  • Diez MC, Tortella GR (2008) Pentachlorophenol degradation in two biological systems: biobed and fixed-bed column, inoculated with the fungus Anthracophyllum discolor. ISMOM November 24–27, Pucón, Chile

    Google Scholar 

  • Domingo JL, Bocio A (2007) Levels of PCDD/PCDFs and PCBs in edible marine species and human intake: a literature review. Environ Int 33:397–405

    Article  CAS  PubMed  Google Scholar 

  • Eizuka E, Ito A, Chida T (2003) Degradation of ipconazole by microorganisms isolated from paddy soil. J Pestic Sci 28:200–207

    Article  CAS  Google Scholar 

  • El-Nahhal T, Undabeytia T, Polubesova YD, Mishael, Nir S, Rubin B (2001) Organoclay formulations of pesticides: reduced leaching and photodegradation. Appl Clay Sci 18:309–326

    Article  CAS  Google Scholar 

  • European Commission Thematic Strategy for Soil Protection. COM (2006) 231 final, 22.9.2006. Brussels, Belgium

    Google Scholar 

  • Fangmin Z, Ningchun Z, Haiming X et al (2006) Cadmium and lead contamination in japonica rice grains and its variation among the different locations in southeast China. Sci Total Environ 359:156–166

    Article  CAS  Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278

    Article  CAS  PubMed  Google Scholar 

  • Furukawa K, Fujihara H (2008) Microbial degradation of polychlorinated biphenyls: biochemical and molecular features. J Biosci Bioeng 105:433–449

    Article  CAS  PubMed  Google Scholar 

  • Fytianos K, Katsianis G, Triantafyllou P, Zachariadis G (2001) Accumulation of heavy metals in vegetables grown in an industrial area in relation to soil. Bull Environ Contam Toxicol 67:423–430

    Article  CAS  PubMed  Google Scholar 

  • Gianfreda L, Rao M (2008) Interactions between xenobiotics and microbial and enzymatic soil activity. Crit Rev Environ Sci Technol 38:269–310

    Article  CAS  Google Scholar 

  • Govil PK, Reddy GLN, Krishna AK (2002) Contamination of soil due to heavy metals in the Patancheru industrial development area, Andhra Pradesh, India. Environ Geol 41:461–469

    Google Scholar 

  • Green E, Short SD, Stutt E, Harrison PTC (2000) Protecting environmental quality and human health: strategies for harmonization. Sci Total Environ 256:205–213

    Article  CAS  PubMed  Google Scholar 

  • Hamilton D, Ambrus A, Dieterle R et al (2004) Pesticide residues in food: acute dietary exposure. Pest Manag Sci 60:311–339

    Article  CAS  PubMed  Google Scholar 

  • Hang X, Wang H, Zhou J, Ma C, Du C, Chen X (2009) Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta. Environ Pollut 157:2542–2549

    Article  CAS  PubMed  Google Scholar 

  • Hawker DW, Connel DW (1988) Octanol-water partition coefficients of polychlorinated biphenyl congeners. Environ Sci Technol 22:382–387

    Article  CAS  Google Scholar 

  • He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140

    Article  CAS  PubMed  Google Scholar 

  • Heikens A, Panaullah GM, Meharg AA (2007) Arsenic behavior from groundwater and soil to crops: impacts on agriculture and food safety. Rev Environ Contam Toxicol 189:43–87

    CAS  PubMed  Google Scholar 

  • Hernandez M, Morgante V, Avila M, Villalobos P, Miralles P, Gonzalez M, Seegers M (2008) Novel s-triazine-degrading bacteria isolated from agricultural soils of central Chile for herbicide bioremediation. Electron J Biotechnol 11:1–6

    Google Scholar 

  • Jones KC, de-Voogt P (1999) Persistent organic pollutants (POPs): state of the science. Environ Pollut 100:209–221

    Article  CAS  PubMed  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace metals in soils and plants, 2nd edn. CRC Press, Boca Raton, FL, pp 143–147

    Google Scholar 

  • Kang JH, Hesterberg D, Osmond DL (2009) Soil organic matter effects on phosphorus sorption: a path analysis. Soil Sci Soc Am J 73:360–366

    Article  CAS  Google Scholar 

  • Katsoyiannis A, Samara C (2004) Persistent organic pollutants (Pops) in the sewage treatment plant of Thessaloniki, Northern Greece: occurrence and removal. Water Res 38:2685–2698

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut 152:686–692

    Article  CAS  PubMed  Google Scholar 

  • Kirpichtchikova TA, Manceau A, Spadini L, Panfili F, Marcus MA, Jacquet T (2006) Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling. Geochim Cosmochim Acta 70:2163–2190

    Article  CAS  Google Scholar 

  • Kremer RJ, Means NE (2009) Glyphosate and glyphosate-resistant crop interactions with rhizosphere microorganisms. Eur J Agron 3:153–161

    Article  CAS  Google Scholar 

  • La Rocca C, Mantovani A (2006) From environment to food: the case of PCB. Ann Ist Super Sanita 42:410–416

    PubMed  Google Scholar 

  • Laird DA, Yen PY, Koskinen WC, Steinheimer TR, Dowdy RH (1994) Sorption of atrazine on soil clay components. Environ Sci Technol 28:1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Ling W, Shen Q, Gao Y, Gu X, Yang Z (2007) Use of bentonite to control the release of copper from contaminated soils. Aus J Soil Res 45:618–623

    Article  CAS  Google Scholar 

  • Lopez-Mosquera ME, Barros R, Sainz MJ, Carral E, Seoane S (2005) Metal concentrations in agricultural and forestry soils in Northwest Spain: implications for disposal of organic wastes on acid soils. Soil Use Manag 21:298–305

    Article  Google Scholar 

  • Mahimairaja S, Bolan NS, Adriano DC, Robinson B (2005) Arsenic contamination and its risk management in complex environmental settings. Adv Agron 86:1–82

    Article  CAS  Google Scholar 

  • Marine AR, Masscheleyn PH, Patric WH (1992) The influence of chemical form and concentration of As on rice growth and tissue As concentration. Plant Soil 139:175–183

    Article  Google Scholar 

  • Masih A, Taneja A (2006) Polycyclic aromatic hydrocarbons (PAHs) concentrations and related carcinogenic potencies in soil at a semi-arid region of India. Chemosphere 65:449–456

    Article  CAS  PubMed  Google Scholar 

  • Maslin P, Maier RM (2000) Rhamnolipid-enhanced mineralization of phenanthrene in organic-metal co-contaminated soils. Bioremed J 4:295–308

    Article  CAS  Google Scholar 

  • Master ER, Lai VWM, Kuipers B, Cullen WR, Mohn WW (2001) Sequential anaerobic-aerobic treatment of soil contaminated with weathered Aroclor 1260. Environ Sci Technol 36:100–103

    Article  CAS  Google Scholar 

  • McKinlay R, Plant JA, Bell JNB (2008) Calculating human exposure to endocrine disrupting pesticides via agricultural and non-agricultural exposure routes. Sci Total Environ 398:1–12

    Article  CAS  PubMed  Google Scholar 

  • Meade T, D’Angelo EM (2005) [14C] Pentachlorophenol mineralization in the rice rhizosphere with established oxidized and reduced soil layers. Chemosphere 61:48–55

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA, Whitaker JH (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species — review. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Mico C, Recatala L, Peris A, Sanchez J (2006) Assessing heavy metal sources in agricultural soils of a European Mediterranean area by multivariate analysis. Chemosphere 65:863–872

    Article  CAS  PubMed  Google Scholar 

  • Paraiba LC, Spadotto CA (2002) Soil temperature effect in calculating attenuation and retardation factors. Chemosphere 48:905–912

    Article  CAS  PubMed  Google Scholar 

  • Paraiba LC, Cerdeira AL, Da Silva EF, Martins JS, Coutinho HLA (2003) Evaluation of soil temperature effect on herbicide leaching potential into groundwater in the Brazilian Cerrado. Chemosphere 53:1087–1095

    Article  CAS  PubMed  Google Scholar 

  • Petruzzelli G, Pedron F (2007) Meccanismi di biodisponibilità nel suolo di contaminanti ambientali persistenti. In: Comba P, Bianchi F, Iavarone I, Pirastu R (eds) Impatto sulla salute dei siti inquinate metodi e strumenti per la ricerca e le valutazioni. Istituto Superiore di Sanità, Roma (Rapporti ISTISAN 07/50)

    Google Scholar 

  • Pikaray S, Banerjeem S, Mukherji S (2005) Sorption of arsenic onto Vindhyan shales: role of pyrite and organic carbon. Curr Sci 88:1580–1585

    Google Scholar 

  • Pizzeghello D, Berti A, Nardi S, Morari F (2011) Phosphorus forms and P-sorption properties in three alkaline soils after long-term mineral and manure applications in north-eastern Italy. Agric Ecosyst Environ 141:58–66

    Article  CAS  Google Scholar 

  • Pohl H, DeRosa C, Holler J (1995) Public health assessment for dioxins exposure from soil. Chemosphere 95:2437–2454

    Article  Google Scholar 

  • Pollitt F (1999) Polychlorinated dibenzodioxins and polychlorinated dibenzofurans. Regul Toxicol Pharmacol 30:63–68

    Article  Google Scholar 

  • Quazi S, Datta R, Sarkar D (2011) Effect of soil types and forms of arsenical pesticide on rice growth and development. Int J Environ Sci Technol 8:45–460

    Article  Google Scholar 

  • Rahaman S, Sinha AC, Mukhopadhyay D (2011) Effect of water regimes and organic matters on transport of arsenic in summer rice (Oryza sativa L.). J Environ Sci 23:633–639

    Article  CAS  Google Scholar 

  • Rama K, Ligy P (2008) Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils. J Hazard Mater 160:559–567

    Article  CAS  Google Scholar 

  • Raymond AW, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1–20

    Google Scholar 

  • Robson M (2003) Methodologies for assessing exposure to metals: human host factors. Ecotoxicol Environ Saf 56:104–109

    Article  CAS  PubMed  Google Scholar 

  • Schmidt CW (2001) The lowdown on low-dose endocrine disrupters. Environ Health Perspect 109:420

    Article  Google Scholar 

  • Semple KT, Morris WJ, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54:809–818

    Article  CAS  Google Scholar 

  • Sharma RK, Agrawal M (2005) Biological effects of heavy metals: an overview. J Environ Biol 26:301–313

    CAS  PubMed  Google Scholar 

  • Shawhney BL, Brown K (1989) Reactions and movement of organic chemicals in soils. Soil Science Society of America, Madison, WI, p 474

    Google Scholar 

  • Shen CF, Chen YX, Huang SB, Wang ZJ, Yu CN, Qiao M, Xu YP, Setty K, Zhang JY, Zhu YF, Lin Q (2009) Dioxin-like compounds in agricultural soils near e-waste recycling sites from Taizhou area, China: chemical and bioanalytical characterisation. Environ Int 35:50–55

    Article  CAS  PubMed  Google Scholar 

  • Signes-Pastor A, Burlo F, Mitra K, Carbonell-Barrachina AA (2007) Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a West Bengal (India) soil. Geoderma 137:504–510

    Article  CAS  Google Scholar 

  • Singh R, Singh DP, Kumar N, Bhargava SK, Barman SC (2010) Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area. J Environ Biol 31:421–430

    CAS  PubMed  Google Scholar 

  • Sridhara-Chary N, Kamala CT, Suman-Raj SD (2008) Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol Food Saf 69:513–524

    Article  CAS  Google Scholar 

  • Streat M, Hellgardt K, Newton NLR (2008) Hydrous ferric oxide as an adsorbent in water treatment Part 3: Batch and minicolumn adsorption of arsenic, phosphorus, fluorine and cadmium ions. Process Saf Environ Prot 86:21–30

    Article  CAS  Google Scholar 

  • Takahashi Y, Minamikawa R, Hattori KH, Kurishima K, Kihou N, Yuita K (2004) Arsenic behaviour in paddy fields during the cycle of flooded and non-flooded periods. Environ Sci Technol 38:1038–1044

    Article  CAS  PubMed  Google Scholar 

  • Tang XJ, Shen CF, Chen L, Xiao X, Wu JY, Khan MI, Dou CM, Chen YX (2010) Inorganic and organic pollution in agricultural soil from an emerging e- waste recycling town in Taizhou area, China. J Soils Sediments 10:895–906

    Article  CAS  Google Scholar 

  • Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003) Environmental exposure to mercury and its toxipathologic implications for human health. Environ Toxicol 18:149–175

    Article  CAS  PubMed  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wania F, McLachlan MS (2001) Estimating the influence of forests on the overall fate of semi volatile organic compounds using a multimedia fate model. Environ Sci Technol 35:582–590

    Article  CAS  PubMed  Google Scholar 

  • Wong SC, Li XD, Zhang G, Qi SH, Min YS (2002) Heavy metals in agricultural soils of the Pearl River Delta, South China. Environ Pollut 119:33–44

    Article  CAS  PubMed  Google Scholar 

  • Xu XY, McGrath SP, Meharg AA, Zhao FJ (2008) Growing rice aerobically decreases arsenic accumulation. Environ Sci Technol 42:5574–5579

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Wei Z, Wang D, Zhang G, Wang J (2015) Phosphorus status and its sorption associated soil properties in a paddy soil as affected by organic amendments. J Soils Sediments 15:1882–1888

    Article  CAS  Google Scholar 

  • Yang B, Zhou LL, Xue ND, Li FS, Wu GL, Ding Q, Yan YZ, Liu B (2013) China action of “clean up plan for polychlorinated biphenyls burial sites”: emissions during excavation and thermal desorption of a capacitor-burial site. Ecotoxicol Environ Saf 96:231–237

    Article  CAS  PubMed  Google Scholar 

  • Yu YL, Fang H, Wang X, Wu XM, Shan M, Yu JQ (2006) Characterization of a fungal strain capable of degrading chlorpyrifos and its use in detoxification of the insecticide on vegetables. Biodegradation 17:487–494

    Article  CAS  PubMed  Google Scholar 

  • Zhang MK, Liu ZY, Wang H (2010) Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Commun Soil Sci Plant Anal 41:820–831

    Article  CAS  Google Scholar 

  • Zhang Q, Ye JJ, Chen JY, Xu HJ, Wang C, Zhao MR (2014) Risk assessment of polychlorinated biphenyls and heavy metals in soils of an abandoned e-waste site in China. Environ Pollut 185:258–265

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, McGrathMc SP, Mehrag AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Lv TF, Chen Y, Westby AP, Ren WJ (2014) Soil physicochemical and biological properties of paddy-upland rotation: a review. Sci World J 2014:1–8

    Google Scholar 

Download references

Acknowledgments

The corresponding author (Wajid Nasim) is grateful to both the Higher Education Commission (HEC), for research project (NRPU 3393), and the Pakistan Science Foundation (PSF) Pakistan, for an International Travel Grant to Turkey in 2017, and he greatly acknowledges the funding and sponsorship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akram, R. et al. (2018). Fate of Organic and Inorganic Pollutants in Paddy Soils. In: Hashmi, M., Varma, A. (eds) Environmental Pollution of Paddy Soils. Soil Biology, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-93671-0_13

Download citation

Publish with us

Policies and ethics