Skip to main content

Fertilization in Starfish and Sea Urchin: Roles of Actin

  • Chapter
  • First Online:
Marine Organisms as Model Systems in Biology and Medicine

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 65))

Abstract

Marine animals relying on “external fertilization” provide advantageous opportunities to study the mechanisms of gamete activation and fusion, as well as the subsequent embryonic development. Owing to the large number of eggs that are easily available and handled, starfish and sea urchins have been chosen as favorable animal models in this line of research for over 150 years. Indeed, much of our knowledge on fertilization came from studies in the echinoderms. Fertilization involves mutual stimulation between eggs and sperm, which leads to morphological, biochemical, and physiological changes on both sides to ensure successful gamete fusion. In this chapter, we review the roles of actin in the fertilization of starfish and sea urchin eggs. As fertilization is essentially an event that takes place on the egg surface, it has been predicted that suboolemmal actin filaments would make significant contributions to sperm entry. A growing body of evidence from starfish and sea urchin eggs suggests that the prompt reorganization of the actin pools around the time of fertilization plays crucial regulatory roles not only in guiding sperm entry but also in modulating intracellular Ca2+ signaling and egg activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258:1812–1815

    Article  CAS  PubMed  Google Scholar 

  • Behnke O, Forer A, Emmersen J (1971) Actin in sperm tails and meiotic spindles. Nature 234:408–410

    Article  CAS  PubMed  Google Scholar 

  • Bose DD, Thomas DW (2009) The actin cytoskeleton differentially regulates NG115-401L cell ryanodine receptor and inositol 1,4,5-trisphosphate receptor induced calcium signaling pathways. Biochem Biophys Res Commun 379:594–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlier M-F, Pantaloni D, Korn ED (1986) The exchangeability of actin-bound calcium with various divalent cations to high-affinity and low-affinity binding sites on ATP-G-actin. J Biol Chem 261:10778–10784

    PubMed  CAS  Google Scholar 

  • Carron CP, Longo FJ (1982) Relation of cytoplasmic alkalinization to microvillar elongation and microfilament formation in the sea urchin egg. Dev Biol 89:128–137

    Article  CAS  PubMed  Google Scholar 

  • Chiba K, Kado RT, Jaffe LA (1990) Development of calcium release mechanisms during starfish oocyte maturation. Dev Biol 140:300–306

    Article  CAS  PubMed  Google Scholar 

  • Chiba K, Kontani K, Tadenuma H, Katada T, Hoshi M (1993) Induction of starfish oocyte maturation by the ßɣ subunit of starfish G protein and possible existence of the subsequent effector in cytoplasm. Mol Biol Cell 4:1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun JT, Santella L (2009a) The actin cytoskeleton in meiotic maturation and fertilization of starfish eggs. Biochem Biophys Res Commun 384:141–143

    Article  CAS  PubMed  Google Scholar 

  • Chun JT, Santella L (2009b) Roles of the actin-binding proteins in intracellular Ca2+ signalling. Acta Physiol (Oxf) 195:61–70

    Article  CAS  Google Scholar 

  • Chun JT, Puppo A, Vasilev F, Gragnaniello G, Garante E, Santella L (2010) The biphasic increase of PIP2 in the fertilized eggs of starfish: new roles in actin polymerization and Ca2+ signaling. PLoS One 5:e14100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun JT, Vasilev F, Santella L (2013) Antibody against the actin-binding protein depactin attenuates Ca2+ signaling in starfish eggs. Biochem Biophys Res Commun 441:301–307

    Article  CAS  PubMed  Google Scholar 

  • Chun JT, Limatola N, Vasilev F, Santella L (2014) Early events of fertilization in sea urchin eggs are sensitive to actin-binding organic molecules. Biochem Biophys Res Commun 450:1166–1174

    Article  CAS  PubMed  Google Scholar 

  • Cohen G, Rubinstein S, Gur Y, Breitbart H (2004) Crosstalk between protein kinase A and C regulates phospholipase D and F-actin formation during sperm capacitation. Dev Biol 267:230–241

    Article  CAS  PubMed  Google Scholar 

  • Correa LM, Thomas A, Meyers SA (2007) The macaque sperm actin cytoskeleton reorganizes in response to osmotic stress and contributes to morphological defects and decreased motility. Biol Reprod 77:942–953

    Article  CAS  PubMed  Google Scholar 

  • Dale B, De Santis A (1981) The effect of cytochalasin B and D on the fertilization of sea urchins. Dev Biol 83:232–237

    Article  CAS  PubMed  Google Scholar 

  • Dale B, de Santis A, Hoshi M (1979) Membrane response to 1-methyladenine requires the presence of the nucleus. Nature 282:89–90

    Article  CAS  PubMed  Google Scholar 

  • Dan J (1952) Studies on the acrosome. I. Reaction to egg-water and other stimuli. Biol Bull 103:54–66

    Article  Google Scholar 

  • Dan JC, Kitahara A, Kohri T (1954) Studies on the acrosome. II. Acrosome reaction in starfish spermatozoa. Biol Bull 107:203–218

    Article  Google Scholar 

  • Dorée M, Kishimoto T (1981) Calcium-mediated transduction of the honnonal message in 1-methyladenine-induced meiosis reinitiation of starfish cocytes. In: Goem J, Peaud-Lendel C (eds) Metabolism and molecular activities of cytokinins. Springer, Berlin, pp 338–348

    Chapter  Google Scholar 

  • Dorée M, Kishimoto T, Le Peuch CJ, Demaille JG, Kanatani H (1981) Calcium-mediated transduction of the hormonal message in meiosis reinitiation of starfish oocytes: modulation following injection of cholera toxin and cAMP-dependent protein kinase. Exp Cell Res 135:237–249

    Article  PubMed  Google Scholar 

  • Dufossé A (1847) Observations sur le developpement des oursins (Echinus esculentus). Comptes Rendus Hebdomadaires des Seances del Academie des Sciences 24:15–18

    Google Scholar 

  • Dvoráková K, Moore HD, Sebková N, Palecek J (2005) Cytoskeleton localization in the sperm head prior to fertilization. Reproduction 130:61–69

    Article  CAS  PubMed  Google Scholar 

  • Fol H (1879) Recherches sur la fécondation et le commencement de l’hénogénie chez divers animaux. Mem Soc Phys Hist Nat Genève 26:392–397

    Google Scholar 

  • Footer MJ, Kerssemakers JW, Theriot JA, Dogterom M (2007) Direct measurement of force generation by actin filament polymerization using an optical trap. Proc Natl Acad Sci U S A 104:2181–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto T, Miyawaki A, Mikoshiba K (1995) Inositol 1,4,5-trisphosphate receptor-like protein in plasmalemmal caveolae is linked to actin filaments. J Cell Sci 108:7–15

    PubMed  CAS  Google Scholar 

  • Fukatsu K, Bannai H, Zhang S, Nakamura H, Inoue T, Mikoshiba K (2004) Lateral diffusion of inositol 1,4,5-trisphosphate receptor type 1 is regulated by actin filaments and 4.1N in neuronal dendrites. J Biol Chem 279:48976–48982

    Article  CAS  PubMed  Google Scholar 

  • Gershman LC, Selden LA, Estes JE (1986) High affinity binding of divalent cations to actin monomers is much stronger than previously reported. Biochem Biophys Res Commun 135:607–614

    Article  CAS  PubMed  Google Scholar 

  • Gordon NK, Gordon R (2016) Embryogenesis explained. World Scientific Press, Singapore, p 657

    Book  Google Scholar 

  • Hertwig O (1876) Beiträge zur Kenntniss der Bildung, Befruchtung und Theilung des thierischen Eies. Morphol Jahr 1:347–452

    Google Scholar 

  • Hirai S, Kubota J, Kanatani H (1971) Induction of cytoplasmic maturation by 1-methyladenine in starfish oocytes after removal of the germinal vesicle. Exp Cell Res 68:137–143

    Article  CAS  PubMed  Google Scholar 

  • Hirohashi N, Kamei N, Kubo H, Sawada H, Matsumoto M, Hoshi M (2008) Egg and sperm recognition systems during fertilization. Develop Growth Differ 50(Suppl 1):S221–S238

    Article  CAS  Google Scholar 

  • Holy J, Schatten G (1991) Spindle pole centrosomes of sea urchin embryos are partially composed of material recruited from maternal stores. Dev Biol 147:343–353

    Article  CAS  PubMed  Google Scholar 

  • Jaffe LF (1993) Classes and mechanisms of calcium waves. Cell Calcium 14:736–745

    Article  CAS  PubMed  Google Scholar 

  • Jaffe LA, Gallo CJ, Lee RH, Ho YK, Jones TL (1993) Oocyte maturation in starfish is mediated by the beta gamma-subunit complex of a G-protein. J Cell Biol 121:775–783

    Article  CAS  PubMed  Google Scholar 

  • Just EE (1939) The biology of the cell surface. P. Blakiston’s Son, Philadelphia, pp 75–103

    Google Scholar 

  • Kamei N, Glabe CG (2003) The species-specific egg receptor for sea urchin sperm adhesion is EBR1, a novel ADAMTS protein. Genes Dev 17:2502–2507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanatani H, Hiramoto Y (1970) Site of action of 1-methyladenine in inducing oocyte maturation in starfish. Exp Cell Res 61:280–284

    Article  CAS  PubMed  Google Scholar 

  • Kanatani H, Shirai H, Nakanishi K, Kurokawa T (1969) Isolation and identification on meiosis inducing substance in starfish Asterias amurensis. Nature 221:273–274

    Article  CAS  PubMed  Google Scholar 

  • Kyozuka K, Chun JT, Puppo A, Gragnaniello G, Garante E, Santella L (2008) Actin cytoskeleton modulates calcium signaling during maturation of starfish oocytes. Dev Biol 320:426–435

    Article  CAS  PubMed  Google Scholar 

  • Kyozuka K, Chun JT, Puppo A, Gragnaniello G, Garante E, Santella L (2009) Guanine nucleotides in the meiotic maturation of starfish oocytes: regulation of the actin cytoskeleton and of Ca2+ signaling. PLoS One 4:e6296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lange K (1999) Microvillar Ca++ signaling: a new view of an old problem. J Cell Physiol 180:19–34

    Article  CAS  PubMed  Google Scholar 

  • Lénárt P, Bacher CP, Daigle N, Hand AR, Eils R, Terasaki M, Ellenberg J (2005) A contractile nuclear actin network drives chromosome congression in oocytes. Nature 436:812–818

    Article  CAS  PubMed  Google Scholar 

  • Lim D, Kyozuka K, Gragnaniello G, Carafoli E, Santella L (2001) NAADP+ initiates the Ca2+ response during fertilization of starfish oocytes. FASEB J 15:2257–2267

    Article  CAS  PubMed  Google Scholar 

  • Lim D, Lange K, Santella L (2002) Activation of oocytes by latrunculin A. FASEB J 16:1050–1056

    Article  CAS  PubMed  Google Scholar 

  • Lim D, Ercolano E, Kyozuka K, Nusco GA, Moccia F, Lange K, Santella L (2003) The M-phase-promoting factor modulates the sensitivity of the Ca2+ stores to inositol 1,4,5-trisphosphate via the actin cytoskeleton. J Biol Chem 278:42505–42514

    Article  CAS  PubMed  Google Scholar 

  • Limatola N, Chun JT, Kyozuka K, Santella L (2015) Novel Ca2+ increases in the maturing oocytes of starfish during the germinal vesicle breakdown. Cell Calcium 58:500–510

    Article  CAS  PubMed  Google Scholar 

  • Luo L (2002) Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu Rev Cell Dev Biol 18:601–635

    Article  CAS  PubMed  Google Scholar 

  • Mah SA, Swanson WJ, Vacquier VD (2005) Positive selection in the carbohydrate recognition domains of sea urchin sperm receptor for egg jelly (suREJ) proteins. Mol Biol Evol 22:533–541

    Article  CAS  PubMed  Google Scholar 

  • Majstoravich S, Zhang J, Nicholson-Dykstra S, Linder S, Friedrich W, Siminovitch KA, Higgs HN (2004) Lymphocyte microvilli are dynamic, actin-dependent structures that do not require Wiskott-Aldrich syndrome protein (WASp) for their morphology. Blood 104:1396–1403

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Kawase O, Islam MS, Naruse M, Watanabe SN, Ishikawa R, Hoshi M (2008) Regulation of the starfish sperm acrosome reaction by cGMP, pH, cAMP and Ca2+. Int J Dev Biol 52:523–526

    Article  CAS  PubMed  Google Scholar 

  • Meijer L, Guerrier P (1984) Maturation and fertilization in starfish oocytes. Int Rev Cytol 86:129–196

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki S (2006) Thirty years of calcium signals at fertilization. Semin Cell Dev Biol 17:233–243

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki SI, Ohmori H, Sasaki S (1975) Action potential and non-linear current-voltage relation in starfish oocytes. J Physiol 246:37–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moccia F (2007) Latrunculin A depolarizes starfish oocytes. Comp Biochem Physiol A Mol Integr Physiol 148:845–852

    Article  CAS  PubMed  Google Scholar 

  • Moody WJ, Bosma MM (1985) Hormone-induced loss of surface membrane during maturation of starfish oocytes: differential effects on potassium and calcium channels. Dev Biol 112:396–404

    Article  CAS  PubMed  Google Scholar 

  • Moreau M, Guerrier P, Doree M, Ashley CC (1978) Hormone-induced release of intracellular Ca2+ triggers meiosis in starfish oocytes. Nature 272:251–253

    Article  CAS  PubMed  Google Scholar 

  • Moy GW, Mendoza LM, Schulz JR, Swanson WJ, Glabe CG, Vacquier VD (1996) The sea urchin sperm receptor for egg jelly is a modular protein with extensive homology to the human polycystic kidney disease protein, PKD1. J Cell Biol 133:809–817

    Article  CAS  PubMed  Google Scholar 

  • Nusco GA, Lim D, Sabala P, Santella L (2002) Ca2+ response to cADPr during maturation and fertilization of starfish oocytes. Biochem Biophys Res Commun 290:1015–1021

    Article  CAS  PubMed  Google Scholar 

  • Nusco GA, Chun JT, Ercolano E, Lim D, Gragnaniello G, Kyozuka K, Santella L (2006) Modulation of calcium signalling by the actin-binding protein cofilin. Biochem Biophys Res Commun 348:109–114

    Article  CAS  PubMed  Google Scholar 

  • Ohlendieck K, Lennarz WJ (1996) Molecular mechanisms of gamete recognition in sea urchin fertilization. Curr Top Dev Biol 32:39–58

    Article  CAS  PubMed  Google Scholar 

  • Ohlendieck K, Partin JS, Stears RL, Lennarz WJ (1994) Developmental expression of the sea urchin egg receptor for sperm. Dev Biol 165:53–62

    Article  CAS  PubMed  Google Scholar 

  • Parrington J, Davis LC, Galione A, Wessel G (2007) Flipping the switch: how a sperm activates the egg at fertilization. Dev Dyn 236:2027–2038

    Article  CAS  PubMed  Google Scholar 

  • Pitnick S, Hosken DJ, Birkhead TR (2009) Sperm morphological diversity. In: Birkhead TR et al (eds) Sperm biology: an evolutionary perspective. Academic, London, pp 69–149

    Chapter  Google Scholar 

  • Puppo A, Chun JT, Gragnaniello G, Garante E, Santella L (2008) Alteration of the cortical actin cytoskeleton deregulates Ca2+ signaling, monospermic fertilization, and sperm entry. PLoS One 3:e3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridgway EB, Gilkey JC, Jaffe LF (1977) Free calcium increases explosively in activating medaka eggs. Proc Natl Acad Sci U S A 74:623–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santella L, Chun JT (2011) Actin, more than just a housekeeping protein at the scene of fertilization. Sci China Life Sci 54:733–743

    Article  CAS  PubMed  Google Scholar 

  • Santella L, Kyozuka K (1994) Reinitiation of meiosis in starfish oocytes requires an increase in nuclear Ca2+. Biochem Biophys Res Commun 203:674–680

    Article  CAS  PubMed  Google Scholar 

  • Santella L, De Riso L, Gragnaniello G, Kyozuka K (1999) Cortical granule translocation during maturation of starfish oocytes requires cytoskeletal rearrangement triggered by InsP3-mediated Ca2+ release. Exp Cell Res 248:567–574

    Article  CAS  PubMed  Google Scholar 

  • Santella L, Lim D, Moccia F (2004) Calcium and fertilization: the beginning of life. Trends Biochem Sci 29:400–408

    Article  CAS  PubMed  Google Scholar 

  • Santella L, Puppo A, Chun JT (2008) The role of the actin cytoskeleton in calcium signaling in starfish oocytes. Int J Dev Biol 52:571–584

    Article  CAS  PubMed  Google Scholar 

  • Santella L, Vasilev F, Chun JT (2012) Fertilization in echinoderms. Biochem Biophys Res Commun 425:588–594

    Article  CAS  PubMed  Google Scholar 

  • Santella L, Limatola N, Chun JT (2015) Calcium and actin in the saga of awakening oocytes. Biochem Biophys Res Commun 460:104–113

    Article  CAS  PubMed  Google Scholar 

  • Santella L, Limatola N, Chun JT (2016) The fertilization process: a new way to look at an old phenomenon. Atlas of Science another view on science. https://atlasofscience.org/the-fertilization-process-a-new-way-to-look-at-an-old-phenomenon/

  • Schatten H, Walter M, Biessmann H, Schatten G (1988) Microtubules are required for centrosome expansion and positioning while microfilaments are required for centrosome separation in sea urchin eggs during fertilization and mitosis. Cell Motil Cytoskeleton 11:248–259

    Article  CAS  PubMed  Google Scholar 

  • Schroeder TE, Stricker SA (1983) Morphological changes during maturation of starfish oocytes: surface ultrastructure and cortical actin. Dev Biol 98:373–384

    Article  CAS  PubMed  Google Scholar 

  • Steinhardt R, Zucker R, Schatten G (1977) Intracellular calcium release at fertilization in the sea urchin egg. Dev Biol 58:185–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stricker SA (1999) Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev Biol 211:157–176

    Article  CAS  PubMed  Google Scholar 

  • Stricker SA, Schatten G (1991) The cytoskeleton and nuclear disassembly during germinal vesicle breakdown in starfish oocytes. Develop Growth Differ 33:163–171

    Article  Google Scholar 

  • Svitkina T (2018) The actin cytoskeleton and actin-based motility. doi: https://doi.org/10.1101/cshperspect.a018267.

  • Terasaki M (1994) Redistribution of cytoplasmic components during germinal vesicle breakdown in starfish oocytes. J Cell Sci 107:1797–1805

    PubMed  CAS  Google Scholar 

  • Terasaki M (1996) Actin filament translocations in sea urchin eggs. Cell Motil Cytoskeleton 34:48–56

    Article  CAS  PubMed  Google Scholar 

  • Tilney LG, Inoué S (1982) Acrosomal reaction of Thyone sperm. II. The kinetics and possible mechanism of acrosomal process elongation. J Cell Biol 93:820–827

    Article  CAS  PubMed  Google Scholar 

  • Tilney LG, Jaffe LA (1980) Actin, microvilli, and the fertilization cone of sea urchin eggs. J Cell Biol 87:771–782

    Article  CAS  PubMed  Google Scholar 

  • Tilney LG, Hatano S, Ishikawa H, Mooseker MS (1973) The polymerization of actin: its role in the generation of the acrosomal process of certain echinoderm sperm. J Cell Biol 59:109–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trimmer JS, Vacquier VD (1986) Activation of sea urchin gametes. Annu Rev Cell Biol 2:1–26

    Article  CAS  PubMed  Google Scholar 

  • Vacquier VD (2012) The quest for the sea urchin egg receptor for sperm. Biochem Biophys Res Commun 425:583–587

    Article  CAS  PubMed  Google Scholar 

  • Vacquier VD, Moy GW (1977) Isolation of bindin: the protein responsible for adhesion of sperm to sea urchin eggs. Proc Natl Acad Sci U S A 74:2456–2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasilev F, Chun JT, Gragnaniello G, Garante E, Santella L (2012) Effects of ionomycin on egg activation and early development in starfish. PLoS One 7:e39231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasilev F, Limatola N, Park DR, Kim UH, Santella L, Chun JT (2018) Disassembly of subplasmalemmal actin filaments induces cytosolic Ca2+ increases in Astropecten aranciacus eggs. Cell Physiol Biochem (under review)

    Google Scholar 

  • Wang Y, Mattson MP, Furukawa K (2002) Endoplasmic reticulum calcium release is modulated by actin polymerization. J Neurochem 82:945–952

    Article  CAS  PubMed  Google Scholar 

  • Welch MD, Mallavarapu A, Rosenblatt J, Mitchison TJ (1997) Actin dynamics in vivo. Curr Opin Cell Biol 9:54–61

    Article  CAS  PubMed  Google Scholar 

  • Wessel GM, Conner SD, Berg L (2002) Cortical granule translocation is microfilament mediated and linked to meiotic maturation in the sea urchin oocyte. Development 129:4315–4325

    PubMed  CAS  Google Scholar 

  • Whitaker M (1994) Exocytosis in sea urchin eggs. Ann N Y Acad Sci 710:248–253

    Article  CAS  PubMed  Google Scholar 

  • Whitaker M (2006) Calcium at fertilization and in early development. Physiol Rev 86:25–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitaker MJ, Baker PF (1983) Calcium-dependent exocytosis in an in vitro secretory granule plasma membrane preparation from sea urchin eggs and the effects of some inhibitors of cytoskeletal function. Proc R Soc Lond B Biol Sci 218:397–413

    Article  CAS  PubMed  Google Scholar 

  • Wilson NF, Snell WJ (1998) Microvilli and cell-cell fusion during fertilization. Trends Cell Biol 8:93–96

    Article  CAS  PubMed  Google Scholar 

  • Ziomek CA, Epel D (1975) Polyspermy block of Spisula eggs is prevented by cytochalasin B. Science 189:139–141

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors are grateful to D. Caramiello for maintenance of A. aranciacus and P. lividus and to R. Graziano, F. Iamunno, and G. Lanzotti at the AMOBIO Unit of the Stazione Zoologica Anton Dohrn who prepared samples for scanning electron microscopy. We also acknowledge G. Gragnaniello for the preparation of the figures and C. Caccavale for her graphic design of Fig 3.1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong Tai Chun or Luigia Santella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chun, J.T., Vasilev, F., Limatola, N., Santella, L. (2018). Fertilization in Starfish and Sea Urchin: Roles of Actin. In: Kloc, M., Kubiak, J. (eds) Marine Organisms as Model Systems in Biology and Medicine. Results and Problems in Cell Differentiation, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-92486-1_3

Download citation

Publish with us

Policies and ethics