Skip to main content

Complexity Measures in Automatic Design of Robot Swarms: An Exploratory Study

  • Conference paper
  • First Online:
Artificial Life and Evolutionary Computation (WIVACE 2017)

Abstract

The design of control software for robot swarms is a challenging endeavour as swarm behaviour is the outcome of the entangled interplay between the dynamics of the individual robots and the interactions among them. Automatic design techniques are a promising alternative to classic ad-hoc design procedures and are especially suited to deal with the inherent complexity of swarm behaviours. In an automatic method, the design problem is cast into an optimisation problem: the solution space comprises instances of control software and an optimisation algorithm is applied to tune the free parameters of the architecture. Recently, some information theory and complexity theory measures have been proposed for the analysis of the behaviour of single autonomous agents; a similar approach may be fruitfully applied also to swarms of robots. In this work, we present a preliminary study on the applicability of complexity measures to robot swarm dynamics. The aim of this investigation is to compare and analyse prominent complexity measures when applied to data collected during the time evolution of a robot swarm, performing a simple stationary task. Although preliminary, the results of this study enable us to state that the complexity measures we used are able to capture relevant features of robot swarm dynamics and to identify typical patterns in swarm behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This goal is motivated by a conjecture on the so-called reality gap, which has been advanced in [3, 10].

  2. 2.

    Indeed, due to excessive computational resources required, for this preliminary step we did not applied measures of complexity based on model construction, such as the ones by Crutchfield et al. [7].

  3. 3.

    Not to be confused with the excess entropy [26], which is defined for \(n \rightarrow \infty \).

  4. 4.

    The name comes from the name initials of its inventors.

References

  1. Ay, N., Bertschinger, N., Der, R., Güttler, F., Olbrich, E.: Predictive information and explorative behavior of autonomous robots. Eur. Phys. J. B - Condens. Matter Complex Syst. 63(3), 329–339 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Badii, R., Politi, A.: Complexity: Hierarchical Structures and Scaling in Physics, vol. 6. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  3. Birattari, M., Delhaisse, B., Francesca, G., Kerdoncuff, Y.: Observing the effects of overdesign in the automatic design of control software for robot swarms. In: Dorigo, M., Birattari, M., Li, X., López-Ibáñez, M., Ohkura, K., Pinciroli, C., Stützle, T. (eds.) ANTS 2016. LNCS, vol. 9882, pp. 149–160. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44427-7_13

    Chapter  Google Scholar 

  4. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  5. http://www.bzip.org. Accessed 30 Nov 2016

  6. Cover, T., Thomas, J.: Elements of Information Theory. Wiley, Hoboken (2012)

    MATH  Google Scholar 

  7. Crutchfield, J.: The calculi of emergence: computation, dynamics, and induction. Physica D 75, 11–54 (1994)

    Article  MATH  Google Scholar 

  8. Edlund, J., Chaumont, N., Hintze, A., Koch, C., Tononi, G., Adami, C.: Integrated information increases with fitness in the evolution of animats. PLoS Comput. Biol. 7(10), e1002236 (2011)

    Article  MathSciNet  Google Scholar 

  9. Francesca, G., Birattari, M.: Automatic design of robot swarms: achievements and challenges. Front. Rob. AI 3, 29 (2016)

    Google Scholar 

  10. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V.: AutoMoDe: a novel approach to the automatic design of control software for robot swarms. Swarm Intell. 8(2), 89–112 (2014)

    Article  Google Scholar 

  11. Galas, D., Nykter, M., Carter, G., Price, N.: Biological information as set-based complexity. IEEE Trans. Inf. Theory 56, 667–677 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gell-Mann, M., Lloyd, S.: Information measures, effective complexity, and total information. Complexity 2(1), 44–52 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grassberger, P.: How to measure self-generated complexity. Phys. A: Stat. Mech. Appl. 140(1–2), 319–325 (1986)

    Article  MathSciNet  Google Scholar 

  14. Kolmogorov, A.: Three approaches to the quantitative definition of information. Prob. Inf. Transm. 1(1), 1–7 (1965)

    MathSciNet  MATH  Google Scholar 

  15. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory 22(1), 75–81 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, W.: On the relationship between complexity and entropy for Markov chains and regular languages. Complex Syst. 5(4), 381–399 (1991)

    MathSciNet  MATH  Google Scholar 

  17. Lindgren, K.: Information theory for complex systems - an information perspective on complexity in dynamical systems, physics, and chemistry. Chalmers (2014). http://studycas.com/c/courses/it

  18. Lindgren, K., Nordahl, M.: Complexity measures and cellular automata. Complex Syst. 2(4), 409–440 (1988)

    MathSciNet  MATH  Google Scholar 

  19. Lizier, J.: The Local Information Dynamics of Distributed Computation in Complex Systems. Springer Theses Series. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32952-4

    Book  MATH  Google Scholar 

  20. Lloyd, S.: Measures of complexity: a nonexhaustive list. IEEE Control Syst. Mag. 21(4), 7–8 (2001)

    Article  Google Scholar 

  21. Lopez-Ruiz, R., Mancini, H., Calbet, X.: A statistical measure of complexity. Phys. Lett. A 209, 321–326 (1995)

    Article  Google Scholar 

  22. Nicolis, G., Nicolis, C.: Foundations of Complex Systems: Emergence, Information and Predicition. World Scientific, Singapore (2012)

    Book  MATH  Google Scholar 

  23. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L., Dorigo, M.: ARGoS: a modular, multi-engine simulator for heterogeneous swarm robotics. Swarm Intell. 6(4), 271–295 (2012)

    Article  Google Scholar 

  24. Prokopenko, M., Boschetti, F., Ryan, A.: An information-theoretic primer on complexity, self-organization, and emergence. Complexity 15(1), 11–28 (2009)

    Article  MathSciNet  Google Scholar 

  25. Prokopenko, M.: Guided Self-Organization: Inception, vol. 9. Springer Science & Business Media, Heidelberg (2013). https://doi.org/10.1007/978-3-642-53734-9

    Google Scholar 

  26. Shalizi, C., Crutchfield, J.: Computational mechanics: pattern and prediction, structure and simplicity. J. Stat. Phys. 104(3), 817–879 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27(1, 2), 379–423, 623–656 (1948)

    Google Scholar 

  28. Sperati, V., Trianni, V., Nolfi, S.: Evolving coordinated group behaviours through maximisation of mean mutual information. Swarm Intell. 2(2), 73–95 (2008)

    Article  Google Scholar 

  29. Trianni, V.: Evolutionary Swarm Robotics: Evolving Self-Organising Behaviours in Groups of Autonomous Robots, vol. 108. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77612-3

    Google Scholar 

  30. Utro, F., Di Benedetto, V., Corona, D., Giancarlo, R.: The intrinsic combinatorial organization and information theoretic content of a sequence are correlated to the DNA encoded nucleosome organization of eukaryotic genomes. Bioinformatics 32(6), 835–842 (2015)

    Article  Google Scholar 

  31. Villani, M., Roli, A., Filisetti, A., Fiorucci, M., Poli, I., Serra, R.: The search for candidate relevant subsets of variables in complex systems. Artif. Life 21(4), 412–431 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Andrea Roli acknowledges the support of Université libre de Bruxelles as visiting professor in the “Chaire internationale” programme. Mauro Birattari acknowledges support from the Belgian Fonds de la Recherche Scientifique – FNRS. The project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 681872).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Roli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roli, A., Ligot, A., Birattari, M. (2018). Complexity Measures in Automatic Design of Robot Swarms: An Exploratory Study. In: Pelillo, M., Poli, I., Roli, A., Serra, R., Slanzi, D., Villani, M. (eds) Artificial Life and Evolutionary Computation. WIVACE 2017. Communications in Computer and Information Science, vol 830. Springer, Cham. https://doi.org/10.1007/978-3-319-78658-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78658-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78657-5

  • Online ISBN: 978-3-319-78658-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics