Skip to main content

Laboratory Modeling of Resonance Phenomena in the Long Wave Dynamics

  • Chapter
  • First Online:
Nonlinear Waves and Pattern Dynamics

Abstract

Two sets of experiments in a wave flume to demonstrate resonance phenomena in laboratory conditions have been performed. The first set was performed to investigate nonlinear wave run-up on the beach. It is revealed that under certain wave excitation frequencies, a significant increase in run-up amplification is observed Ezersky et al. (Nonlin Processes Geophys 20:35, 2013, [1]). It is found that this amplification is due to the excitation of resonant mode in the region between the shoreline and wave maker. The second set of experiments was performed to model an excitation of localized mode (edge waves) by breaking waves propagating towards shoreline. It is shown that the excitation of edge waves is due to parametric instability similar to pendulum with vibrating point of suspension. The domain of instability in the plane of parameters (amplitude—frequency) of surface wave is found. It was found that for amplitude of surface wave slightly exceeding the threshold, the amplitude of edge wave grows exponentially with time, whereas for the large amplitude, the wave breaking appears and excitation of edge wave does not occur. It was shown that parametric excitation of edge wave can increase significantly (up to two times) the maximal run-up height.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ezersky A., Abcha N. and Pelinovsky E. Physical simulation of resonant wave run-up on a beach. Nonlin. Processes Geophys. 2013;20:35.

    Article  ADS  Google Scholar 

  2. Nikolkina I. and Didenkulova I. Rogue waves in 2006–2010. Natural Hazards and Earth System Sciences. 2011;11:2913.

    Article  ADS  Google Scholar 

  3. Nikolkina I. and Didenkulova I. Catalogues of rogue waves reported in media in 2006–2010. Natural Hazards. 2012;61:989.

    Article  Google Scholar 

  4. Neetu S., Suresh I., Shankar R., Nagarajan B. and Sharma R. Trapped waves of the 27 November 1945 tsunami: observations and numerical modeling, Natural Hazards and Earth System Sciences. 2011;59:1609.

    Article  Google Scholar 

  5. Didenkulova I. and Pelinovsky E. Rogue waves in nonlinear hyperbolic systems (shallow-water framework). Nonlinearity. 2011;24:R1-R18.

    Article  ADS  MathSciNet  Google Scholar 

  6. Slunyaev A., Didenkulova I. and Pelinovsky E. Rogue waters. Contemporary Physics. 2011;52:571.

    Article  ADS  Google Scholar 

  7. Carrier G.F., Wu T.T. and Yeh H. Tsunami run-up and draw-down on a plane beach. J. Fluid Mech. 2003;475:79.

    Article  ADS  MathSciNet  Google Scholar 

  8. Pelinovsky E. Nonlinear dynamics of tsunami waves. Institute of Applied Physics, Nizhny Novgorod, (in Russian) 1982.

    Google Scholar 

  9. Pelinovsky E. and Mazova R. Exact analytical solutions of nonlinear problems of tsunami wave run-up on slopes with different profiles. Natural Hazards and Earth System Sciences. 1992;6:227.

    Article  Google Scholar 

  10. Synolakis C. The runup of solitary waves. J. Fluid Mech. 1987;185:523.

    Article  ADS  MathSciNet  Google Scholar 

  11. Stefanakis T.S., Dias F. and Dutykh D. Local run-up amplification by resonant wave interaction. Phys. Rev. Lett. 2011;107:124502.

    Article  ADS  Google Scholar 

  12. Antuono M. & Brocchini M. Solving the nonlinear shallow-water equations in physical sense. J. Fluid Mech. 2010;643:207.

    Article  ADS  MathSciNet  Google Scholar 

  13. Abcha N., Zhang T., Ezersky A., Pelinovsky E. and Didenkulova I. Subharmonic parametric exitation of edge waves by breaking surface waves. Nonlin. Processes Geophys. 2017;24:157.

    Article  ADS  Google Scholar 

  14. Johnson R.S.. Some contributions to the theory of edge waves. J. Fluid Mech. 2005;524:81.

    Article  ADS  MathSciNet  Google Scholar 

  15. Johnson R.S. Edge waves: theories past and present. Phyl. Trans. R. Soc. A. 2007;365:2359.

    Article  ADS  MathSciNet  Google Scholar 

  16. Akylas A. R. Large-scale modulations of edge waves. J. Fluid Mech. 1983;132:197.

    Article  ADS  MathSciNet  Google Scholar 

  17. Dubinina V.A., Kurrhin A.A., Pelinovsky E.N. and Poloukhina O.E. Weakly nonlinear periodic Stokes edge waves. Izvestiya, Atmospheric and Oceanic Physics. 2004;40:464.

    MathSciNet  Google Scholar 

  18. Grimshaw R. Edge waves: a long –wave theory for oceans of finite depth. J. Fluid Mech. 1974;62;775.

    Article  ADS  Google Scholar 

  19. Kurkin A. and Pelinovsky E. Focusing of edge waves above sloping beach. European Journal of Mechanics—B/Fluid. 2002;21:561.

    Google Scholar 

  20. Minzoni A.A. and Whitham G.B. On the excitation of edge waves on beaches. J. Fluid Mech. 1977;79:273.

    Article  ADS  MathSciNet  Google Scholar 

  21. Pelinovsky E. N.., Polukhina O. and Kurkin A. Rogue edge waves in the ocean. European Physical Journal Special Topics. 2010;185:35.

    Article  ADS  Google Scholar 

  22. Blondeaux P. and Vittori G. The nonlinear excitation of synchronous edge waves by a monochromatic wave normally approaching a plane beach. J. Fluid Mech.1995;301:251.

    Article  ADS  MathSciNet  Google Scholar 

  23. Carter R.W.G. An introduction to the physical, ecological and cultural systems of coastlines. ACADEMIC PRESS, London, San Diego. 2002: 620 p.

    Google Scholar 

  24. Coco G., Burnet T.K. and Werner B.T. Test of self-organisation in beach cusp.. J. Geoph. Res. 2003;108: https://doi.org/10.1029/2002jc001496.

  25. Guza R.T. and Davis R.E. Excitation of edge waves by waves incident on beach. J Geophys. Research. 1974;79:1285.

    Article  ADS  Google Scholar 

  26. Huntley D.A. and Bowen A.J. Bach cups and edge waves. Proc. 16th Coastal Engineering Conference, Hamburg. 1978:1378.

    Google Scholar 

  27. Buchan S. J. & Pritchard W. G. Experimental observations of edge waves. J. Fluid Mech. 1995;288:1.

    Article  ADS  Google Scholar 

  28. Yang J. The stability and nonlinear evolution of edge waves. Studies in applied mathematics. 1995;95:229.

    Article  MathSciNet  Google Scholar 

  29. Ezersky, A. B. and Matusov, P. A. Time-space chaos of capillary waves parametrically excited by noise. Radiophys. Quantum El. 1994;37:828.

    Article  ADS  Google Scholar 

  30. Petrelis F., Aumaitre S. and Fauve S. Effect of phase noise on parametric instabilities. Phys; Rev. Lett. 2005;94:07060397.

    Article  Google Scholar 

Download references

Acknowledgements

This work is dedicated to the memory of a dear friend and colleague Professor Alexander Ezersky, who sadly passed away after a long-lasting fight with the cancer. Until his last days, he tried to dedicate his time to work, the results of which are also presented in this Chapter.

The present study was supported by the Russian state contract 5.5176.2017/8.9, Russian President Grant NSh-2685.2018.5, RFBR grant 17-05-00067 and ETAG project PUT1378. ID and EP also thank the University of Caen for its visitor program, who allowed this fruitful collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nizar Abcha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abcha, N., Pelinovsky, E., Didenkulova, I. (2018). Laboratory Modeling of Resonance Phenomena in the Long Wave Dynamics. In: Abcha, N., Pelinovsky, E., Mutabazi, I. (eds) Nonlinear Waves and Pattern Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-78193-8_2

Download citation

Publish with us

Policies and ethics