Skip to main content

Load Balancing for CPU-GPU Coupling in Computational Fluid Dynamics

  • Conference paper
  • First Online:
Book cover Parallel Processing and Applied Mathematics (PPAM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10777))

Abstract

This paper investigates static load balancing models for CPU-GPU coupling from a computational fluid dynamics perspective. While able to generate a benefit, traditional load balancing models are found to be too inaccurate to predict the runtime of a preconditioned conjugate gradient solver. Hence, an expanded model is derived that accounts for the multi-step nature of the solver, i.e. several communication barriers per iteration. It is able to predict the runtime to a margin of 5%, rendering CPU-GPU coupling better predictable so that load balancing can be improved substantially.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Augonnet, C., et al.: StarPU: a unified platform for task scheduling on heterogeneous multicore architectures. Concurr. Comput. Pract. Exp. 23(2), 187–198 (2011)

    Article  Google Scholar 

  2. Cantwell, C.D., et al.: From h to p efficiently: strategy selection for operator evaluation on hexahedral and tetrahedral elements. Comput. Fluids 43(1), 23–28 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Deville, M.O., Fischer, P.F., Mund, E.H.: High-Order Methods for Incompressible Fluid Flow. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  4. Dong, T., et al.: A step towards energy efficient computing: redesigning a hydrodynamic application on CPU-GPU. In: 2014 IEEE 28th International Parallel and Distributed Processing Symposium, pp. 972–981. IEEE (2014)

    Google Scholar 

  5. Feichtinger, C., et al.: Performance modeling and analysis of heterogeneous lattice Boltzmann simulations on CPU–GPU clusters. Parallel Comput. 46, 1–13 (2015)

    Article  MathSciNet  Google Scholar 

  6. Hager, G., Wellein, G.: Introduction to High Performance Computing for Scientists and Engineers. CRC Press Inc., Boca Raton (2010)

    Book  Google Scholar 

  7. Hermann, E., Raffin, B., Faure, F., Gautier, T., Allard, J.: Multi-GPU and multi-CPU parallelization for interactive physics simulations. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6272, pp. 235–246. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15291-7_23

    Chapter  Google Scholar 

  8. Hirsch, C.: Numerical Computation of Internal and External Flows: Fundamentals of Numerical Discretization. Wiley, New York (1988)

    MATH  Google Scholar 

  9. Huismann, I., Stiller, J., Fröhlich, J.: Fast static condensation for the Helmholtz equation in a spectral-element discretization. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 371–380. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32152-3_35

    Chapter  Google Scholar 

  10. Huismann, I., Stiller, J., Fröhlich, J.: Two-level parallelization of a fluid mechanics algorithm exploiting hardware heterogeneity. Comput. Fluids 117, 114–124 (2015)

    Article  MathSciNet  Google Scholar 

  11. Karnagel, T., Habich, D., Lehner, W.: Limitations of intra-operator parallelism using heterogeneous computing resources. In: Pokorný, J., Ivanović, M., Thalheim, B., Šaloun, P. (eds.) ADBIS 2016. LNCS, vol. 9809, pp. 291–305. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44039-2_20

    Chapter  Google Scholar 

  12. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for CFD. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  13. Liu, X., et al.: A hybrid solution method for CFD applications on GPU-accelerated hybrid HPC platforms. Future Gener. Comput. Syst. 56, 759–765 (2016)

    Article  Google Scholar 

  14. Páll, S., Abraham, M.J., Kutzner, C., Hess, B., Lindahl, E.: Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In: Markidis, S., Laure, E. (eds.) EASC 2014. LNCS, vol. 8759, pp. 3–27. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15976-8_1

    Google Scholar 

  15. Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing pain. Technical report, Carnegie Mellon University, Pittsburgh (1994)

    Google Scholar 

  16. Xu, C., et al.: Collaborating CPU and GPU for large-scale high-order CFD simulations with complex grids on the TianHe-1A supercomputer. J. Comput. Phys. 278, 275–297 (2014)

    Article  MATH  Google Scholar 

  17. Zhong, Z., Rychkov, V., Lastovetsky, A.: Data partitioning on multicore and multi-GPU platforms using functional performance models. IEEE Trans. Comput. 64(9), 2506–2518 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the German Research Foundation (DFG) within the Cluster of Excellence “Center for Advancing Electronics Dresden” (cfaed). Computing time was provided by ZIH Dresden. The authors would like to thank Professor Karsten Eppler for advise on the optimization problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Immo Huismann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huismann, I., Lieber, M., Stiller, J., Fröhlich, J. (2018). Load Balancing for CPU-GPU Coupling in Computational Fluid Dynamics. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM 2017. Lecture Notes in Computer Science(), vol 10777. Springer, Cham. https://doi.org/10.1007/978-3-319-78024-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78024-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78023-8

  • Online ISBN: 978-3-319-78024-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics