Skip to main content

A Multi-objective Time-Linkage Approach for Dynamic Optimization Problems with Previous-Solution Displacement Restriction

  • Conference paper
  • First Online:
Book cover Applications of Evolutionary Computation (EvoApplications 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10784))

Abstract

Dynamic optimization problems (DOPs) are problems that change over time and many real-world problems are classified as DOPs. However, most of investigations in this domain are focused on tracking moving optima (TMO) without considering any other objectives which creates a gap between real-world problems and academic research in this area. One of the important optimization objectives in many real-world problems is previous-solution displacement restriction (PSDR) in which successive solutions should not be much different. PSDRs can be categorized as a multi-objective problem in which the first objective is optimality and the second one is minimizing the displacement of consecutive solutions which also can represents switching cost. Moreover, PSDRs are counted as dynamic time-linkage problems (DTPs) because the current chosen solution by the optimizer will change the next search space. In this paper, we propose a new hybrid method based on particle swarm optimization (PSO) for PSDRs based on their characteristics. The experiments are done on moving peaks benchmark (MPB) and the performance of the proposed algorithm alongside two comparison ones are investigated on it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nguyen, T.T.: Continuous dynamic optimisation using evolutionary algorithms. Ph.D. thesis, University of Birmingham (2011)

    Google Scholar 

  2. Atkin, J.A.D., Burke, E.K., Greenwood, J.S., Reeson, D.: On-line decision support for take-off runway scheduling with uncertain taxi times at London Heathrow airport. J. Sched. 11(5), 323–346 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Huang, Y., Ding, Y., Hao, K., Jin, Y.: A multi-objective approach to robust optimization over time considering switching cost. Inf. Sci. 394–395, 183–197 (2017)

    Article  Google Scholar 

  4. Nguyen, T.T., Yao, X.: Dynamic time-linkage problems revisited. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Machado, P. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 735–744. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01129-0_83

    Chapter  Google Scholar 

  5. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  6. Bui, L.T., Branke, J., Abbass, H.A.: Multiobjective optimization for dynamic environments. In: IEEE Congress on Evolutionary Computation, pp. 2349–2356 (2005)

    Google Scholar 

  7. Farina, M., Deb, K., Amato, P.: Dynamic multiobjective optimization problems: test cases, approximations, and applications. IEEE Trans. Evol. Comput. 8(5), 425–442 (2004)

    Article  MATH  Google Scholar 

  8. Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making Theory and Methodology. Noth-Holland, New York (1983)

    MATH  Google Scholar 

  9. Nguyen, T.T., Yang, Z., Bonsall, S.: Dynamic time-linkage problems - the challenges. In: IEEE RIVF International Conference on Computing and Communication Technologies, Research, Innovation, and Vision for the Future (2012)

    Google Scholar 

  10. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: a survey of the state of the art. Swarm Evol. Comput. 6, 1–24 (2012)

    Article  Google Scholar 

  11. Mavrovouniotis, M., Li, C., Yang, S.: A survey of swarm intelligence for dynamic optimization: algorithms and applications. Swarm Evol. Comput. 33, 1–17 (2017)

    Article  Google Scholar 

  12. Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic environments. IEEE Trans. Evol. Comput. 10(4), 459–472 (2006)

    Article  Google Scholar 

  13. Branke, J., Kaussler, T., Smidt, C., Schmeck, H.: A multi-population approach to dynamic optimization problems. In: Parmee, I.C. (eds.) Evolutionary Design and Manufacture, pp. 299–307. Springer, London (2000). https://doi.org/10.1007/978-1-4471-0519-0_24

  14. Yazdani, D., Nasiri, B., Azizi, R., Sepas-Moghaddam, A., Meybodi, M.R.: Optimization in dynamic environments utilizing a novel method based on particle swarm optimization. Int. J. Artif. Intell. 11, 170–192 (2013)

    Google Scholar 

  15. Li, C., Yang, S.: Fast multi–swarm optimization for dynamic optimization problems. In: Proceedings of 4th International Conference on Natural Computation, pp. 624–628 (2008)

    Google Scholar 

  16. Yazdani, D., Sepas-Moghaddam, A., Dehban, A., Horta, N.: A novel approach for optimization in dynamic environments based on modified artificial fish swarm algorithm. Int. J. Comput. Intell. Appl. 15(2), 1650010 (2016)

    Article  Google Scholar 

  17. Yazdani, D., Nasiri, B., Sepas-Moghaddam, A., Meybodi, M.R., Akbarzadeh-Totonchi, M.R.: mNAFSA: a novel approach for optimization in dynamic environments with global changes. Swarm Evol. Comput. 18, 38–53 (2014)

    Article  Google Scholar 

  18. Ursem, R.K.: Multinational GAs: multimodal optimization techniques in dynamic environments. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 19–26 (2000)

    Google Scholar 

  19. Parrott, D., Li, X.: Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Trans. Evol. Comput. 10(4), 440–458 (2006)

    Article  Google Scholar 

  20. Li, C., Yang, S.: A clustering particle swarm optimizer for dynamic optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 439–446 (2009)

    Google Scholar 

  21. Yang, S., Li, C.: A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments. IEEE Trans. Evol. Comput. 14(6), 959–974 (2010)

    Article  Google Scholar 

  22. Du, W., Li, B.: Multi–strategy ensemble particle swarm optimization for dynamic optimization. Inf. Sci. 178, 3096–3109 (2008)

    Article  MATH  Google Scholar 

  23. Blackwell, T., Branke, J., Li, X.: Particle swarms for dynamic optimization problems. Swarm Intelligence: Introduction and Applications, pp. 193–217 (2008)

    Google Scholar 

  24. Li, C., Nguyen, T.T., Yang, M., Mavrovouniotis, M., Yang, S.: An adaptive multi-population framework for locating and tracking multiple optima. IEEE Trans. Evol. Comput. 20(5), 590–605 (2016)

    Article  Google Scholar 

  25. Yazdani, D., Nasiri, B., Sepas-Moghaddam, A., Meybodi, M.R.: A novel multi-swarm algorithm for optimization in dynamic environments based on particle swarm optimization. Appl. Soft Comput. 13(4), 2144–2158 (2013)

    Article  Google Scholar 

  26. Bosman, P.A.N.: Learning, anticipation and time-deception in evolutionary online dynamic optimization. In: Proceedings of the 7th Annual Workshop on Genetic and Evolutionary Computation, pp. 39–47. ACM (2005)

    Google Scholar 

  27. Bosman, P.A.N.: Learning and anticipation in online dynamic optimization. In: Yang, S., Ong, Y.S., Jin, Y. (eds.) Evolutionary Computation in Dynamic and Uncertain Environments. Studies in Computational Intelligence, vol. 51, pp. 129–152. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-49774-5_6

  28. Bu, C., Luo, W., Zhu, T., Yue, L.: Solving online dynamic time-linkage problems under unreliable prediction. Appl. Soft Comput. 56, 702–716 (2017)

    Article  Google Scholar 

  29. Bui, L.T., Abbass, H.A., Branke, J.: Multiobjective optimization for dynamic environments. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 2349–2356 (2005)

    Google Scholar 

  30. Wei, J., Wang, Y.: Hyper rectangle search based particle swarm algorithm for dynamic constrained multi-objective optimization problems. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1–8 (2012)

    Google Scholar 

  31. Wei, J., Jia, L.: A novel particle swarm optimization algorithm with local search for dynamic constrained multi-objective optimization problems. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 2436–2443 (2013)

    Google Scholar 

  32. Wang, Y., Li, B.: Investigation of memory-based multi-objective optimization evolutionary algorithm in dynamic environment. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 630–637 (2009)

    Google Scholar 

  33. Salomon, S., Avigad, G., Fleming, P.J., Purshouse, Robin C.: Optimization of adaptation - a multi-objective approach for optimizing changes to design parameters. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 21–35. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37140-0_6

    Chapter  Google Scholar 

  34. Avigad, G., Eisenstadt, E., Schuetze, O.: Handling changes of performance requirements in multi-objective problems. J. Eng. Des. 23(8), 597–617 (2012)

    Article  Google Scholar 

  35. Yu, X., Jin, Y., Tang, K., Yao, X.: Robust optimization over time – a new perspective on dynamic. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1–6 (2010)

    Google Scholar 

  36. Coello, C.A., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Cybern. 8(3), 256–279 (2004)

    Google Scholar 

  37. Fu, H., Sendhoff, B., Tang, K., Yao, X.: Robust optimization over time: problem difficulties and benchmark problems. IEEE Trans. Evol. Comput. 19(5), 731–745 (2015)

    Article  Google Scholar 

  38. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 1875–1882 (1999)

    Google Scholar 

  39. Jin, Y., Tang, K., Yu, X., Sendhoff, B., Yao, X.: A framework for finding robust optimal solutions over time. Memetic Comput. 5(1), 3–18 (2013)

    Article  Google Scholar 

  40. Yazdani, D., Nguyen, T.T., Branke, J., Wang, J.: A New multi-swarm particle swarm optimization for robust optimization over time. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10200, pp. 99–109. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55792-2_7

    Chapter  Google Scholar 

  41. Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 84–88 (2001)

    Google Scholar 

Download references

Acknowledgments

This work was supported by a Dean’s Scholarship by the Faculty of Engineering and Technology, LJMU, a Newton Institutional Links grant no. 172734213, funded by the UK BEIS and delivered by the British Council, and a NRCP grant no. NRCP1617-6-125 delivered by the Royal Academy of Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danial Yazdani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yazdani, D., Nguyen, T.T., Branke, J., Wang, J. (2018). A Multi-objective Time-Linkage Approach for Dynamic Optimization Problems with Previous-Solution Displacement Restriction. In: Sim, K., Kaufmann, P. (eds) Applications of Evolutionary Computation. EvoApplications 2018. Lecture Notes in Computer Science(), vol 10784. Springer, Cham. https://doi.org/10.1007/978-3-319-77538-8_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77538-8_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77537-1

  • Online ISBN: 978-3-319-77538-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics