Skip to main content

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 90))

Abstract

A coupled gradient chemoelasticity theory is employed to model the two-phase mechanism that occurs during lithiation of silicon nanoparticles used to fabricate next generation Li-ion battery (LIB) anodes. It is shown that the strain gradient length scale is able to predict the propagation of an interface front of nonzero thickness advancing from the lithiated to unlithiated region without necessarily including higher-order concentration gradients of the Li ions. Larger strain gradient coefficients (elastic internal lengths) induce more diffused interfaces and faster lithiation, which affect both internal strain and stress distributions in a similar way. Estimates for the migration velocity of the phase boundary are obtained and a range of values of the strain gradient length scale is shown to simulate the observed experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aifantis, K.E., Hackney, S.A.: An ideal elasticity problem for Li-batteries. J. Mech. Behav. Mater. 14(6), 413–427 (2003). https://doi.org/10.1515/JMBM.2003.14.6.413

    Article  Google Scholar 

  2. Aifantis, K.E., Dempsey, J.P.: Stable crack growth in nanostructured Li-batteries. J. Power Sources 143(1–2), 203–211 (2005). https://doi.org/10.1016/j.jpowsour.2004.11.037

    Article  Google Scholar 

  3. Dimitrijevic, B.J., Aifantis, K.E., Hackl, K.: The influence of particle size and spacing on the fragmentation of nanocomposite anodes for Li batteries. J. Power Sources 206, 343–348 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.065

    Article  Google Scholar 

  4. Aifantis, K.E., Hackney, S.A., Kumar, V.R. (Eds.): High Energy Density Lithium Batteries: Materials, Engineering, Applications. Wiley-VCH, Weinheim (2010). https://doi.org/10.1002/9783527630011

    Google Scholar 

  5. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958). https://doi.org/10.1063/1.1744102

    Article  Google Scholar 

  6. Cahn, J.W.: On spinodal decomposition. Acta Metall. 9(9), 795–801 (1961). https://doi.org/10.1016/0001-6160(61)90182-1

    Article  Google Scholar 

  7. Ryu, I., Choi, J.W., Cui, Y., Nix, W.D.: Size-dependent fracture of Si nanowire battery anodes. J. Mech. Phys. Solids 59(9), 1717–1730 (2011). https://doi.org/10.1016/j.jmps.2011.06.003

    Article  Google Scholar 

  8. Bohn, E., Eckl, T., Kamlah, M., McMeeking, R.: A model for lithium diffusion and stress generation in an intercalation storage particle with phase change. J. Electrochem. Soc. 160(10), A1638–A1652 (2013). https://doi.org/10.1149/2.011310jes

    Article  Google Scholar 

  9. Haftbaradaran, H., Song, J., Curtin, W.A., Gao, H.: Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration. J. Power Sources 196, 361–370 (2011). https://doi.org/10.1016/j.jpowsour.2010.06.080

    Article  Google Scholar 

  10. Zhao, K., Pharr, M., Cai, S., Vlassak, J.J., Suo, Z.: Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge. J. Am. Ceram. Soc. 94(S1), S226–S235 (2011). https://doi.org/10.1111/j.1551-2916.2011.04432.x

    Article  Google Scholar 

  11. Anand, L.: A Cahn–Hilliard-type theory for species diffusion coupled with large elastic-plastic deformations. J. Mech. Phys. Solids 60, 1983–2002 (2012). https://doi.org/10.1016/j.jmps.2012.08.001

    Article  MathSciNet  MATH  Google Scholar 

  12. Cogswell, D.A., Bazant, M.Z.: Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. ACS Nano 6(3), 2215–2225 (2012). https://doi.org/10.1021/nn204177u

    Article  Google Scholar 

  13. Bagni, C., Askes, H., Aifantis, E.C.: Gradient-enriched finite element methodology for axisymmetric problems. Acta Mech. 228(4), 1423–1444 (2017). https://doi.org/10.1007/s00707-016-1762-7

    Article  MathSciNet  MATH  Google Scholar 

  14. Tsagrakis, I., Aifantis, E.C.: Thermodynamic coupling between gradient elasticity and a Cahn–Hilliard type of diffusion: size-dependent spinodal gaps. Contin. Mech. Thermodyn. (2017). https://doi.org/10.1007/s00161-017-0565-y

    Article  MathSciNet  Google Scholar 

  15. Tsagrakis, I., Aifantis, E.C.: Gradient and size effects on spinodal and miscibility gaps. Contin. Mech. Thermodyn. (submitted) (2017)

    Google Scholar 

  16. Liu, X.H., Wang, J.W., Huang, S., Fan, F., Huang, X., Liu, Y., Krylyuk, S., Yoo, J., Dayeh, S.A., Davydov, A.V., Mao, S.X., Picraux, S.T., Zhang, S., Li, J., Zhu, T., Huang, J.Y.: In situ atomic-scale imaging of electrochemical lithiation in silicon. Natl. Nanotechnol. 7, 749–756 (2012). https://doi.org/10.1038/nnano.2012.170

    Article  Google Scholar 

  17. Wang, J.W., He, Y., Fan, F., Liu, X.H., Xia, S., Liu, Y., Harris, C.T., Li, H., Huang, J.Y., Mao, S.X., Zhu, T.: Two-phase electrochemical lithiation in amorphous silicon. Nano Lett. 13(2), 709–715 (2013). https://doi.org/10.1021/nl304379k

    Article  Google Scholar 

  18. Chen, L., Fan, F., Hong, L., Chen, J., Ji, Y.Z., Zhang, S.L., Zhu, T., Chen, L.Q.: A phase-field model coupled with large elasto-plastic deformation: application to lithiated silicon electrodes. J. Electrochem. Soc. 161(11), F3164–F3172 (2014). https://doi.org/10.1149/2.0171411jes

    Article  Google Scholar 

  19. Xie, Z., Ma, Z., Wang, Y., Zhou, Y., Lu, C.: A kinetic model for diffusion and chemical reaction of silicon anode lithiation in lithium ion batteries. RSC Adv. 6, 22383–22388 (2016). https://doi.org/10.1039/C5RA27817A

    Article  Google Scholar 

  20. Beaulieu, L.Y., Eberman, K.W., Turner, R.L., Krause, L.J., Dahna, J.R.: Colossal reversible volume changes in lithium alloys. Electrochem. Solid-State Lett. 4(9), A137–A140 (2001). https://doi.org/10.1149/1.1388178

    Article  Google Scholar 

  21. Berla, L.A., Lee, S.W., Cui, Y., Nix, W.D.: Mechanical behavior of electrochemically lithiated silicon. J. Power Sources 273, 41–51 (2015). https://doi.org/10.1016/j.jpowsour.2014.09.073

    Article  Google Scholar 

  22. Aifantis, E.C., Serrin, J.B.: The mechanical theory of fluid interfaces and Maxwell’s rule. J. Colloid Interface Sci. 96(2), 517–529 (1983). https://doi.org/10.1016/0021-9797(83)90053-X

    Article  Google Scholar 

  23. Aifantis, E.C., Serrin, J.B.: Equilibrium solutions in the mechanical theory of fluid microstructures. J. Colloid Interface Sci. 96(2), 530–547 (1983). https://doi.org/10.1016/0021-9797(83)90054-1

    Article  Google Scholar 

  24. Burch, D., Bazant, M.Z.: Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles. Nano Lett. 9(11), 3795–3800 (2009). https://doi.org/10.1021/nl9019787

    Article  Google Scholar 

  25. Bockris, J.O’M., Reddy, A.K.N., Gamboa-Aldeco, M.E.: Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd edn, p. 1213. Kluwer Academic Publishers (2002). https://doi.org/10.1007/0-306-47605-3_2

  26. Purkayastha, R., McMeeking, R.: A parameter study of intercalation of lithium into storage particles in a lithium-ion battery. Comput. Mater. Sci. 80, 2–14 (2013). https://doi.org/10.1016/j.commatsci.2012.11.050

    Article  Google Scholar 

  27. Ding, N., Xu, J., Yao, Y.X., Wegner, G., Fang, X., Chen, C.H., Lieberwirth, I.: Determination of the diffusion coefficient of lithium ions in nano-Si. Solid State Ionics 180, 222–225 (2009). https://doi.org/10.1016/j.ssi.2008.12.015

    Article  Google Scholar 

Download references

Acknowledgements

The input and discussions with Professor Katerina Aifantis of the University of Florida on the topic of LIBs were very useful and deeply appreciated. The support of the Ministry of Education and Science of Russian Federation under Mega-Grant No.14.Z50.31.0039 is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias C. Aifantis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Tsagrakis, I., Aifantis, E.C. (2018). Gradient Elasticity Effects on the Two-Phase Lithiation of LIB Anodes. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds) Generalized Models and Non-classical Approaches in Complex Materials 2. Advanced Structured Materials, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-319-77504-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77504-3_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77503-6

  • Online ISBN: 978-3-319-77504-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics