Skip to main content

Relative Locations of Clustered Earthquakes in the Sea of Marmara and States of Local Stresses in the East of the Central Marmara Basin

  • Chapter
  • First Online:
Moment Tensor Solutions

Part of the book series: Springer Natural Hazards ((SPRINGERNAT))

  • 1467 Accesses

Abstract

We relocate 27 small earthquakes and invert the state of stress in the East of the Central Marmara basin through re-identification of P and S phases using a joint data set. Also, we derive relative locations of 425 clustered earthquakes with ML ≥ 1.5 in the Marmara Region using the Hypodd software. The main objective is to achieve the definition of geometrical orientations and seismic behaviours of the fault segments. Locating between the 1912 Mürefte and 1999 Izmit earthquakes and being a seismic gap, seismic and geodetic analyzes in the Central Marmara Sea are significant. We use well-defined P and S phases for locations, and completely observable P-wave first motion polarities (FMPs) for simultaneously determined individual fault plane solutions (FPSs) and stress orientations. We get data from 105 seismic stations, including 5 continuous OBSs; hence, each FPS has at least 10 FMPs and maximum 1 inconsistent station. We observe normal and oblique focal mechanism solutions, and a NE-SW trended extensional state of stress in the Eastern Central Marmara by this comprehensive research, although the main Marmara Fault, the western branch of the North Anatolian Fault Zone (NAFZ), is dominated by a right lateral strike-slip regime. Due to the use of a dense network, we observe neither horizontal nor vertical large shifts in the locations of earthquakes: a total of 398 out of 425 are from Korkusuz Öztürk et al. (Tectonophysics 665:37–57, 2015), after the relative relocation process. As a result, we could not observe fault dip angles clearly, but define seismic zones for each segment which has not been done before for many segments in the Sea of Marmara, and interpret current stress loads. Consequently, our sensitive relocations and stress tensor inversion analyses will make an important contribution to a better understanding of the fault movements in the Sea of Marmara, and shed light on especially earthquake rupture and tsunami analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aksoy ME, Meghraoui M, Vallée M, Çakır Z (2010) Rupture characteristics of the AD 1912 Mürefte (Ganos) Earthquake segment of the North Anatolian Fault (Western Turkey). Geol Soc Am 38:37–57

    Google Scholar 

  • Aksoy ME, Meghraoui M, Çakır Z, Battlo J (2012) The 9 August 1912 Mürefte Earthquake, PANAF, Istanbul Technical University, Turkey

    Google Scholar 

  • Aksu AE, Calon TJ, Hiscott RN (2000) Anatomy of the North Anatolian Fault Zone in the Marmara Sea, Western Turkey: extensional basins above a continental transform. GSA Today, June 2000

    Google Scholar 

  • Ambraseys NN, Finkel CF (1987) The Saros-Marmara Earthquake of 9 August 1912. Earthq Eng Struct Dyn 15:189–211

    Article  Google Scholar 

  • Ambraseys N (2002) The seismic activity of the Marmara Sea region over the last 2000 years. Bull Seismol Soc Am 92:1–18

    Article  Google Scholar 

  • Armijo R, Meyer B, Navarro S, King G, Barka A (2002) Asymmetric slip partitioning in the Sea of Marmara Pull-Apart: a clue to propagation processes of the North Anatolian Fault? Terra Nova 14:80–86

    Google Scholar 

  • Armijo R, Pondard N, Meyer B, Uçarkus G, de Lepinay BM, Malavieille J, Dominguez S, Gustcher M, Schmidt S, Beck C, Çagatay N, Çakir Z, Imren C, Eris K, Natalin B, Özalaybey S, Tolun L, Lefevre I, Seeber L, Gasperini L, Rangin C, Emre O, Sarikavak K (2005) Submarine fault scarps in the sea of Marmara Pull-A part (North Anatolian Fault): implications for seismic hazard in Istanbul. AGU Geochem Soc 1525–2027

    Google Scholar 

  • Barka A (1996) Slip distribution along the North Anatolian Fault associated with the large earthquakes of the period 1939 to 1967. Bull Seismol Soc Am 86:1238–1254

    Google Scholar 

  • Barka A, Akyüz A, Altunel HS, Sunal G, Çakır Z, Dikbaş A, Yeli B, Armijo R, Meyer B, de Chabalier JB, Rockwel T, Dolan JR, Hartleb R, Dawson T, Christoferson S, Tucker A, Fumal T, Langridge R, Stenner H, Lettis W, Bachhuber J, Page W (2002) The surface rupture and slip distribution of the 17 August, 1999 Izmit Earthquake, M = 7.4, North Anatolian fault. Bull Seismol Soc Am 92:43–60

    Article  Google Scholar 

  • Başarır Baştürk N, Özel NM, Caciagli M (2016) Seismic parameters re-determined from historical seismograms of 1935—Erdek—Marmara Island and 1963—Çınarcık Earthquakes. Earth Planets Space 68:158. https://doi.org/10.1186/s40623-016-0528-8

  • Bayrakci G, Laigle M, Becel A, Hirn A, Taymaz T, Yolsal-Çevikbilen S (2013) SEISMARMARA team, 3-D sediment-basement tomography of the Northern Marmara trough by a dense OBS network at the nodes of a grid of controlled source profiles along the North Anatolian Fault. Geophys J Int 194:1335–1357. https://doi.org/10.1093/gji/ggt211

    Article  Google Scholar 

  • Beyhan G, Selim HH (2007) Tectonics of the North Anatolian Fault located in the sea of Marmara according to seismic reflection data. In: International earthquake symposium, Kocaeli

    Google Scholar 

  • Boaz R (2009) PQL II. http://www.passcal.nmt.edu/content/pql-ii-program-viewing-data

  • Bohnhoff M, Grosser H, Dresen G (2006) Strain partitioning and stress rotation at the North Anatolian Fault Zone from aftershock focal mechanisms of the 1999 Izmit Mw = 7.4 earthquake. Geophys J Int 160:373–385

    Article  Google Scholar 

  • Bohnhoff M, Dresen G, Bulut F, Nurlu M, Akin D, Kılıç T, Ito H, Malin P (2012) GONAF—a deep Geophysical Observatory at the North Anatolian Fault, Kashiwazaki, 8 Nov 2012

    Google Scholar 

  • Bohnhoff M, Bulut F, Dresen G, Malin PE, Eken T, Aktar M (2013) An earthquake gap south of Istanbul. Nat Commun. https://doi.org/10.1038/ncomms2999

  • Bouchon M, Toksöz MN, Karabulut H, Bouin MP, Dietrich M, Aktar M, Edie M (2002) Space and time evolution of rupture and faulting during the 1999 Izmit (Turkey) earthquake. Bull Seismol Soc Am 92:256–266. https://doi.org/10.1785/0120000845

    Article  Google Scholar 

  • Bulut F, Aktar M (2007) Accurate relocation of İzmit Earthquake (Mw = 7.4, 1999) aftershocks in Çınarcık Basin using double difference method. GRL 34:L10307–L10307. https://doi.org/10.1029/2007gl029611

  • Bulut F, Bohnhoff M, Ellsworth WL, Aktar M, Dresen G (2009) Microseismicity at the North Anatolian Fault in the Sea of Marmara Offshore Istanbul, NW Turkey. J Geophys Res. https://doi.org/10.1029/2008jb006244

  • Cemen I, Gokten E, Varol B, Kilic R, Ozaksoy V, Erkmen C, Pinar A (2000) Turkish earthquakes reveal dynamics of fracturing along a major strike-slip fault zone, EOS. Trans Am Geophys Union 81:309–320

    Article  Google Scholar 

  • Dewey JF, Şengör AMC (1979) Aegan and surrounding regions: complex multiplate and continuum mechanics in a convergence zone. Bull Geol Soc Am 84:3137–3180

    Article  Google Scholar 

  • Erdik M, Demircioğlu MB, Şeşetyan K, Durukal E, Siyahi B (2004) Earthquake hazard in Marmara Region, Turkey. Soil Dyn Earthq Eng 24:605–631

    Article  Google Scholar 

  • Erdik M (2013) Earthquake risk in Turkey. Science 341:724. https://doi.org/10.1126/science.1238945

    Article  Google Scholar 

  • Ergintav S, Doğan U, Gerstenecker C, Çakmak R, Belgen A, Demirel H, Aydın C, Reilinger R (2007) A snapshot (2003–2005) of the 3D postseismic deformation for the 1999, Mw = 7.4 Izmit Earthquake in the Marmara Region, Turkey, by first results of joint gravity and GPS monitoring. J Geodyn 44:1–18

    Article  Google Scholar 

  • Ergintav S, Reilinger RE, Çakmak R, Floyd M, Çakır Z, Doğan U, King RW, McClusky S, Özener H (2014) Istanbul’s earthquake hot spots: geodetic constraints on strain accumulation along faults in the Marmara seismic gap. Geophys Res Lett. https://doi.org/10.1002/2014gl060985

  • Flerit F, Armijo R, King GCP, Meyer B, Barka A (2003) Slip partitioning in the Sea of Marmara pull-apart determined from GPS velocity vectors. Geophys J Int 1–7 (2003)

    Article  Google Scholar 

  • Frechet J (1985) Sismogenese et doublets sismiques, These d’Etat, Universite Scientifique et Medicale de Grenoble, 206 pp

    Google Scholar 

  • Geiger L (1910) Herdbestimming bei Erdbeben aus den Ankunftszeiten, K. Ges. Wiss. Gött. 4:331–349

    Google Scholar 

  • Geli L, Henry P, Zitter T, Dupré S, Tryon M, Çağatay MN, Mercier de Lépinay B, Le Pichon X, Şengör AMC, Görür N, Natalin B, Uçarkuş G, Özeren S, Volker D, Gasperinin L, Burnard P, Bourlange S (2008) Gas emissions and active tectonics within the submerged section of the North Anatolian Fault Zone in the Sea of Marmara. The Marmara Scientific Party

    Google Scholar 

  • Gephart JW, Forsyth DW (1984) An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence. J Geophys Res 9305–9320

    Article  Google Scholar 

  • Gürbüz C, Aktar M, Eyidoğan H, Cisternas A, Haessler H, Barka A, Ergin M, Türkelli N, Polat O, Üçer SB, Kuleli S, Baris S, Kaypak B, Bekler T, Zor E, Bicmen F, Yoruk A (2000) The seismotectonics of the Marmara Region (Turkey): results from a microseismic experiment. Tectonophysics 1–17

    Article  Google Scholar 

  • Horiuchi S, Rocco G, Hasegawa A (1995) Discrimination of fault planes from auxiliary planes based on simultaneous determination of stress tensor and a large number of fault plane solutions. J Geophys Res 8327–8338

    Article  Google Scholar 

  • Hubert-Ferrari A, Barka A, Jacques E, Nalbant S, Meyer B, Armijo R, Tapponnier P, King GP (2000) Seismic hazard in the Marmara Sea region following the 17 August 1999 Izmit Earthquake. Nature 404:269–273

    Article  Google Scholar 

  • Ito A, Ucer SB, Baris S, Honkura Y, Nakamura A, Kono T, Pektas R, Komut T, Hasegawa A, Isikara AM (2002) Aftershock activity of 1999 Izmit Earthquake, Turkey, revealed from microearthquake observations. Bull Seismol Soc Am 418–427

    Google Scholar 

  • Karabulut H, Bouin M, Bouchon M, Dietrich M, Cornou C, Aktar M (2002) The seismicity in the eastern Marmara Sea after the 17 August 1999 Izmit Earthquake. Bull Seismol Soc Am 387–393

    Article  Google Scholar 

  • Karabulut H, Özalaybey S, Taymaz T, Aktar M, Selvi O, Kocaoğlu A (2003) A tomographic image of the shallow crustal structure in the eastern Marmara. Geophys Res Lett. https://doi.org/10.1029/2003gl018074

  • Karabulut H, Schmittbuhl J, Özalaybey S, Lengline O, Kömeç-Mutlu A, Durand V, Bouchon M, Daniel G, Bouin MP (2011) Evolution of the seismicity in the eastern Marmara Sea a decade before and after the 17 August 1999 Izmit Earthquake. Tectonophysics 17–27

    Article  Google Scholar 

  • Ketin I (1948) Über die tektonisch-mechanischen Folgerungen aus den großen Anatolischen Erdbeben des letzten Dezenniums. Geol Rundschau 36:77–83

    Article  Google Scholar 

  • King GCP, Hubert-Ferrari A, Nalbant S, Meyer B, Armijo R, Bowman D (2001) Coulomb interactions and the 17 August Izmit, Turkey earthquake. Earth Planet Sci 557–569

    Google Scholar 

  • Kinscher J, Krüger F, Woith H, Lühr BG, Hintersberger E, Irmak TS, Baris S (2013) Seismotectonics of the Armutlu peninsula (Marmara Sea, NW Turkey) from geological field observation and regional moment tensor inversion. Tectonophysics 608:980–995

    Article  Google Scholar 

  • Kiratzi AA (2002) Stress tensor inversions along the Westernmost North Anatolian Fault Zone and its continuation into the North Aegean Sea. Geophys J Int 360–376

    Article  Google Scholar 

  • Klein E, Duputel Z, Masson F, Yavasoglu H, Agram P (2017) Aseismic slip and seismogenic coupling in the Marmara Sea: what can we learn from onland Geodesy? Geophys Res Lett 44:3100–3108. https://doi.org/10.1002/2017GL072777

    Article  Google Scholar 

  • Korkusuz Y (2012) The present day stress states in the Marmara Region. MSc thesis, Boğaziçi University, Kandilli Observatory and Earthquake Research Institute, Department of Geophysics. https://tez.yok.gov.tr/UlusalTezMerkezi/tarama.jsp

  • Korkusuz Öztürk Y, Özel NM, Özbakır AD (2015) States of local stresses in the Sea of Marmara through the analysis of large numbers of small earthquakes. Tectonophysics 665:37–57. https://doi.org/10.1016/j.tecto.2015.09.027

    Article  Google Scholar 

  • Laigle M, Becel A, Voogd B, Hirn A, Taymaz T, Özalaybey S (2008) A first deep seismic survey in the Sea of Marmara: deep basins and whole crust architecture and evolution. Earth Planet Sci Lett 270:168–179

    Article  Google Scholar 

  • Le Pichon X, Şengör AMC, Demirbağ E, Rangın C, İmren C, Armıjo R, Görür N, Çağatay N, Mercıer De Lepınay B, Meyer B, Saatçiler R, Tok B (2001) The active main Marmara Fault. Earth Planet Sci Lett 192:595–616

    Google Scholar 

  • Lienert BRE (1991) Report on modifications made to hypocenter. Technical Report, Institute of Solid Earth Physics, University of Bergen, Bergen, Norway

    Google Scholar 

  • Lienert BRE, Berg E, Frazer LN (1986) Hypocenter: an earthquake location method using centered, scaled, and adaptively least squares. Bull Seismol Soc Am 76:771–783

    Google Scholar 

  • Lienert BR, Havskov J (1995) A computer program for locating earthquakes both locally and globally. Seismol Res Lett 66(5)

    Article  Google Scholar 

  • Lisle R, Orife T, Arlegui L (2001) A stress inversion method requiring only fault slip sense. J Geophys Res Solid Earth 106:2281–2289

    Article  Google Scholar 

  • Meade BJ, Hager BH, McClusky SC, Reilinger RE, Ergintav S, Lenk O, Barka A, Ozener H (2002) Estimates of seismic potential in the Marmara region from block models of secular deformation constrained by GPS measurements. Bull Seismol Soc Am 92:208–215

    Article  Google Scholar 

  • Michael AJ (1984) Determination of stress from slip data: faults and folds. J Geophys Res 11517–11526

    Article  Google Scholar 

  • McClusky S, Reilinger R, Mahmoud S, Ben Sari D, Tealeb A (2003) GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys J Int 126–138

    Article  Google Scholar 

  • McKenzie D (1972) Active tectonics of the Mediterranean region. Geophys J Roy Astron Soc 30:109–185

    Article  Google Scholar 

  • McKenzie D (1978) Active tectonics of the Alpine-Himalayan belt: the Aegan Sea and surrounding regions. Geophys J Roy Astron Soc 55:217–254

    Article  Google Scholar 

  • Oglesby DD, Mai PM (2012) Fault geometry rupture dynamics and ground motion from potential earthquakes on the North Anatolian Fault under the Sea of Marmara. Geophys J Int 188:1071–1087. https://doi.org/10.1111/j.1365-246x.2011.05289.x

    Article  Google Scholar 

  • Okay AI, Kaşlılar-Özcan A, İmren C, Boztepe-Güney A, Demirbağ E, Kuşçu İ (2000) Active faults and evolving strike-slip basins in the Marmara Sea, Northwest Turkey: a multichannel seismic reflection study. Tectonophysics 189–218

    Article  Google Scholar 

  • Okay AI, Tüysüz O, Kaya Ş (2004) From Transpression to Transtension: changes in morphology and structure around a bend on the North Anatolian Fault in the Marmara Region. Tectonophysics 259–282

    Article  Google Scholar 

  • Otsubo M, Yamaji A, Kubo A (2008) Determination of stresses from heterogeneous focal mechanism data: an adaptation of the multiple inverse method. Tectonophysics 150–160

    Article  Google Scholar 

  • Örgülü G (2011) Seismicity and source parameters for small-scale earthquakes along the splays of the North Anatolian Fault (NAF) in the Marmara Sea. Geophys J Int 385–404

    Article  Google Scholar 

  • Örgülü G, Aktar M (2001) Regional moment tensor inversion for strong aftershocks of the August 17, 1999 Izmit Earthquake (Mw = 7.4). Geophys Res Lett 28(2):371–374

    Article  Google Scholar 

  • Özalaybey S, Ergin M, Aktar M, Tapırdamaz C, Biçmen F, Yörük A (2002) The 1999 Izmit Earthquake sequence in Turkey: seismological and tectonic aspects. Bull Seismol Soc Am 376–386

    Article  Google Scholar 

  • Parsons T (2004) Recalculated probability of M ≥ 7 earthquakes beneath the Sea of Marmara, Turkey. J Geophys Res 109. https://doi.org/10.1029/2003jb00266

  • Pınar A, Honkura Y, Kuge K (2001) Seismic activity triggered by the 1999 Izmit Earthquake and its implications for the assessment of future seismic risk. Geophys J Int 146:F1–F7

    Article  Google Scholar 

  • Pınar A, Kuge K, Honkura Y (2003) Moment tensor inversion of recent small to moderate sized earthquakes: implications for seismic hazard and active tectonics beneath the Sea of Marmara. Geophys J Int 133–145

    Google Scholar 

  • Pinar A, Ucer SB, Honkura Y, Sezgin N, Ito A, Baris S, Kalafat D, Matsushima M, Horiuchi S (2009) Spatial variation of stress field along the fault rupture zone of the 1999 Izmit Earthquake. Earth Planets Space 1–14

    Google Scholar 

  • Polat O, Haessler H, Cisternas A, Philip H, Eyidoğan H, Aktar M, Frogneux M, Comte D, Gürbüz C (2002) The Izmit (Kocaeli), Turkey Earthquake of 17 August 1999: previous seismicity, aftershocks, and seismotectonics. Bull Seismol Soc Am 361–375

    Article  Google Scholar 

  • Pondard N, Armijo R, King GCP, Meyer B, Flerit F (2007) Fault interactions in the Sea of Marmara pull-apart (North Anatolian Fault): earthquake clustering and propagating earthquake sequences. Geophys J Int 171(3):1185–1197

    Article  Google Scholar 

  • Rangin C, Demirbag E, Imren C, Crusson A, Normand A, Le Drezen E, Le Bot A (2001) Marine atlas of the Sea of Marmara (Turkey), Ifremer, Brest, France

    Google Scholar 

  • Reasenberg PA, Oppenheimer D (1985) FPFIT, FPPLOT, and FPPAGE: Fortran computer programs for calculating and displaying earthquake fault plane solutions. Depth of Interior, US Geological Survey, Open-file report, 109, 85–739

    Google Scholar 

  • Reilinger R, McClusky S, Vernant P, et al (2006) GPS constraints on continental deformation in the Africa-arabia-Eurasia continental collision zone and implications for the dynamic of plate interactions. J Geophys Res. http://doi.org/10.1029/2005JB004051

  • Reuter HI, Nelson A, Jarvis A (2007) An evaluation of void filling interpolation methods for SRTM data. Int J Geogr Inf Sci 21(9):983–1008

    Article  Google Scholar 

  • Rivera L, Cisternas A (1990) Stress tensor and fault plane solutions for a population of earthquakes. Bull Seismol Soc Am 80(3):600–614

    Google Scholar 

  • Sato T, Kasahara J, Taymaz T, Ito M, Kamimura A, Hayakawa T, Tan O (2004) A study of microearthquake seismicity and focal mechanisms within the Sea of Marmara (NW Turkey) using ocean bottom seismometers (OBSs). Tectonophysics 303–314

    Article  Google Scholar 

  • Sato K (2006) Incorporation of incomplete fault-slip data into stress tensor inversion. Tectonophysics 319–330

    Article  Google Scholar 

  • Schmittbuhl J, Karabulut H, Lengline O, Bouchon M (2015) Seismicity distribution and locking depth along the main Marmara Fault, Turkey. Geochem Geophys Geosyst 17:954–965. https://doi.org/10.1002/2015GC006120

    Article  Google Scholar 

  • Shan YH, Lin G, Li Z (2004) An inverse method to determine the optimal stress from imperfect fault data. Tectonophysics 387:205–215

    Article  Google Scholar 

  • Şaroğlu F, Emre Ö, Kuşçu İ (1992) Active fault map of Turkey, General Directorate of the Mineral Research and Exploration, Ankara, Turkey, 2 sheets, 1.2 000 000 scale

    Google Scholar 

  • Şengör AMC, Tüysüz O, İmren C, Sakınç M, Eyidoğan H, Görür N, Le Pichon X, Rangin C (2005) The North Anatolian Fault: a new look. Annu Rev Earth Planet Sci 33:37–112

    Article  Google Scholar 

  • Taymaz T, Jackson J, McKenzie D (1991) Active tectonics of the north and central Aegean Sea. Geophys J Int 433–490

    Article  Google Scholar 

  • Tunç B, Çaka D, Irmak TS, Woith H, Tunç S, Bariş Ş, Özer MF, Lühr BG, Günther E, Grosser H, Zschau J (2011) The Armutlu network: an investigation into the seismotectonic setting of Armutlu-Yalova-Gemlik and the surrounding regions. Ann Geophys. https://doi.org/10.4401/ag-4877

  • Uçarkuş G, Çakır Z, Armijo R (2010) Western termination of the Mw 7.4, 1999 Izmit Earthquake rupture: implications for the expected large earthquake in the Sea of Marmara. Turk J Earth Sci 20:383–398. https://doi.org/10.3906/yer-0911-7

  • Waldhauser F (2001) Hypodd—a program to compute double-difference hypocenter locations

    Google Scholar 

  • Waldhauser F, Ellsworth WL (2000) A double-difference earthquake location algorithm: method and application to the northern Hayward fault. Bull Seismol Soc Am 90:1353–1368

    Article  Google Scholar 

  • Wright T, Fielding E, Parsons B (2001) Triggered slip: observations of the 17 August 1999 Izmit (Turkey) Earthquake using radar interferometry. Geophys Res Lett 28:1079–1082. https://doi.org/10.1029/2000GL011776

    Article  Google Scholar 

  • Yaltırak C, Erturaç MK, Tüysüz O, Saki-Yaltırak K (2003) Marmara Denizi’nde Tarihsel Depremler: Yerleri, Büyüklükleri, Etki Alanları ve Güncel Kırılma Olasılıkları, Kuvaterner Çalıştayı, 174–180

    Google Scholar 

  • Yamamoto R, Kido M, Ohta Y, Takahashi N, Yamamoto Y, Kalafat D, Pinar A, Ozeren S, Kaneda Y (2016) Creep rate measurement and fault modelling at the North Anatolian Fault, beneath the Sea of Marmara, Turkey, by means of acoustic ranging, paper presented at Japan Geoscience Union meeting 2016, Chiba, Japan, S-CG59-07

    Google Scholar 

  • Yamamoto Y, Takahashi N, Pinar A, Kalafat D, Citak S, Comoglu M, Polat R, Kaneda Y (2017) Geometry and segmentation of the North Anatolian Fault beneath the Marmara Sea, Turkey, deduced from long-term ocean bottom seismographic observations. J Geophys Res Solid Earth 122:2069–2084. https://doi.org/10.1002/2016JB013608

    Article  Google Scholar 

  • Zachariasen J, Sieh K (1995) The transfer of slip between, En Echelon Strike-Slip Faults: a case study from the 1992 Landers Earthquake, Southern California. J Geophys Res 100–15:281–301

    Google Scholar 

Download references

Acknowledgements

We thank the National Earthquake Monitoring Center of Kandilli Observatory and Earthquake Research Institute (NEMC-KOERI), and Marmara Research Center of The Scientific and Technological Research Council of Turkey (TUBITAK-MRC) for the data supply through the TURDEP Project. We acknowledge to Semih Ergintav for giving constructive comments, and Onur Tan for his beneficial remarks. Also, we thank Mehmet Yılmazer, Korhan Umut Şemin and Metin Kahraman for software support, Zafer Öğütçü and Zümer Pabuçcu for the supply of earthquake catalogues, and Burak Korkusuz for his contribution to the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasemin Korkusuz Öztürk .

Editor information

Editors and Affiliations

Appendices

Appendix 1: List of Earthquakes

Erlt, Erln, Erdp values indicate latitude, longitude, and depth errors, respectively. The given Strike/Dip/Rake values are obtained by the stress tensor inversion approach of the Horiuchi et al. (1995).

Date

Time

Latitude

Longitude

Depth

Mag

Erlt

Erln

Erdp

GAP

Strike

Dip

Rake

15.1.2010

23:4

40.821999

28.152000

12.000

2.0

1.0

1.4

2.9

84

144.43

75.09

−91.44

9.5.2010

23:33

40.823002

28.108000

12.300

2.2

1.1

1.1

2.8

57

145.60

90.00

−90.00

3.10.2010

17:49

40.817001

28.141001

13.600

4.7

1.0

1.0

2.2

29

85.00

90.00

−133.05

4.10.2010

16:3

40.851002

28.167000

16.800

2.5

1.8

1.7

5.8

119

233.99

50.00

−107.36

7.10.2010

5:3

40.830002

28.143000

11.900

3.0

1.1

0.9

2.5

37

321.46

70.01

−70.44

7.10.2010

6:20

40.840000

28.158001

10.000

2.5

1.3

1.3

3.3

73

327.85

69.97

−68.20

7.10.2010

23:37

40.833000

28.167000

7.100

2.4

1.6

1.5

5.2

121

246.00

75.02

−117.03

8.10.2010

3:38

40.826000

28.146000

12.000

2.5

1.7

1.3

3.4

102

119.43

55.05

−87.86

8.10.2010

3:41

40.833000

28.145000

9.300

2.4

1.0

1.1

4.2

74

248.80

85.01

−148.25

27.10.2010

15:51

40.808998

28.134001

9.100

2.6

1.0

1.2

2.8

44

79.43

85.00

−113.14

6.4.2011

0:19

40.817001

28.129999

9.100

2.0

1.2

1.5

4.2

61

246.31

76.22

−95.93

21.4.2011

17:49

40.837002

28.165001

12.200

2.6

1.1

1.0

2.6

28

113.66

60.32

−85.68

1.5.2011

8:36

40.828999

28.143000

10.900

3.5

1.0

1.0

2.1

30

289.33

69.99

−91.75

19.5.2011

4:38

40.832001

28.139000

12.300

3.4

0.9

0.8

2.2

30

45.01

50.02

−88.15

22.5.2011

22:39

40.834000

28.150999

12.100

2.9

1.0

0.9

2.0

52

290.75

64.99

−91.52

9.6.2011

20:43

40.832001

28.138000

11.600

2.3

1.6

1.5

2.7

60

173.05

65.00

−85.67

10.6.2011

4:28

40.834000

28.132999

10.900

2.3

1.3

1.2

2.6

45

257.16

70.01

−110.08

14.6.2011

5:37

40.827999

28.141001

11.200

1.6

1.6

1.6

3.1

106

144.43

75.09

−91.44

25.8.2011

7:12

40.818001

28.117001

12.700

2.3

1.0

1.4

2.3

61

145.60

90.00

−90.00

25.8.2011

13:25

40.820000

28.131001

13.300

2.5

1.4

1.7

3.8

79

306.01

74.99

−72.11

20.9.2011

6:24

40.816002

28.155001

9.700

2.2

1.3

1.2

3.9

46

145.60

90.00

−90.00

20.9.2011

6:27

40.820999

28.146000

10.600

2.6

1.0

1.0

2.3

29

90.00

90.00

−121.67

25.3.2012

22:53

40.813999

28.132000

11.400

2.2

1.2

1.2

2.4

76

165.46

75.47

−93.71

10.5.2012

8:34

40.832001

28.145000

10.200

2.4

1.3

1.2

2.6

89

124.59

65.00

−81.06

29.9.2012

17:28

40.835999

28.163000

14.000

2.1

1.8

2.0

3.0

95

230.62

80.00

−122.18

16.9.2013

18:13

40.831001

28.150999

7.200

2.2

0.9

1.0

3.1

55

145.60

90.00

−90.00

7.3.2014

20:51

40.801998

28.125999

6.400

2.8

3.4

3.0

5.4

81

258.79

79.99

−124.08

Appendix 2: List of Stations

See Tables 3, 4, 5 and 6.

Table 3 List of 40 BB stations of Kandilli Observatory & Earthquake Research Institute
Table 4 List of 50 Stations of the TURDEP Project
Table 5 List of 10 Short-period stations of Kandilli Observatory & Earthquake Research Institute
Table 6 List of 5 SBO stations of Kandilli Observatory & Earthquake Research Institute

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Korkusuz Öztürk, Y., Meral Özel, N. (2018). Relative Locations of Clustered Earthquakes in the Sea of Marmara and States of Local Stresses in the East of the Central Marmara Basin. In: D'Amico, S. (eds) Moment Tensor Solutions. Springer Natural Hazards. Springer, Cham. https://doi.org/10.1007/978-3-319-77359-9_20

Download citation

Publish with us

Policies and ethics