Skip to main content

Modeling of Cellular Systems: Application in Stem Cell Research and Computational Disease Modeling

  • Chapter
  • First Online:
Book cover Theoretical and Applied Aspects of Systems Biology

Part of the book series: Computational Biology ((COBO,volume 27))

  • 1069 Accesses

Abstract

The large-scale development of high-throughput sequencing technologies has allowed the generation of reliable omics data at different regulatory levels. Integrative computational models enable the disentangling of complex interplay between these interconnected levels of regulation by interpreting these large quantities of biomedical information in a systematic way. In the context of human diseases, network modeling of complex gene-gene interactions has been successfully used for understanding disease-related dysregulations and for predicting novel drug targets to revert the diseased phenotype. Furthermore, these computational network models have emerged as a promising tool to dissect the mechanisms of developmental processes such as cellular differentiation, transdifferentiation, and reprogramming. In this chapter, we provide an overview of recent advances in the field of computational modeling of cellular systems and known limitations. A particular attention is paid to highlight the impact of computational modeling on our understanding of stem cell biology and complex multifactorial nature of human diseases and their treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teng S, Madej T, Panchenko A, Alexov E. Modeling effects of human single nucleotide polymorphisms on protein-protein interactions. Biophys J. 2009;96(6):2178–88.

    Article  Google Scholar 

  2. Ay A, Arnosti DN. Mathematical modeling of gene expression: a guide for the perplexed biologist. Crit Rev Biochem Mol Biol. 2011;46(2):137–51.

    Article  Google Scholar 

  3. Angelini C, Costa V. Understanding gene regulatory mechanisms by integrating ChIP-seq and RNA-seq data: statistical solutions to biological problems. Front Cell Dev Biol. 2014;2:51.

    Article  Google Scholar 

  4. Stolyar S, Van Dien S, Hillesland KL, Pinel N, Lie TJ, Leigh JA, et al. Metabolic modeling of a mutualistic microbial community. Mol Syst Biol. 2007;3(1):92.

    Google Scholar 

  5. Ledyankina OA, Mikhailov SA. Composite model of a research flight simulator for a helicopter with the hingeless main rotor. Rus Aeronaut. 2016;59(4):495–9.

    Google Scholar 

  6. Ahluwalia U, Katyal N, Deep S. Models of protein folding. J Protein Proteomics. 2013;3(2):85–93.

    Google Scholar 

  7. Agatonovic-Kustrin S, Beresford R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed Anal. 2000;22(5):717–27.

    Article  Google Scholar 

  8. Brodland GW. How computational models can help unlock biological systems. Semin Cell Dev Biol. 2015;47-8((Supplement C)):62–73.

    Article  Google Scholar 

  9. Nikitin A, Egorov S, Daraselia N, Mazo I. Pathway studio the analysis and navigation of molecular networks. Bioinformatics. 2003;19(16):2155–7.

    Article  Google Scholar 

  10. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex networks. Science. 2002;298(5594):824–7.

    Article  Google Scholar 

  11. Soliman S. A stronger necessary condition for the multistationarity of chemical reaction networks. Bull Math Biol. 2013;75(11):2289–303.

    Article  MathSciNet  Google Scholar 

  12. Plahte E, Mestl T, Omholt SW. Feedback loops, stability and multistationarity in dynamical systems. J Biol Syst. 1995;03(02):409–13.

    Article  Google Scholar 

  13. Crespo I, Perumal TM, Jurkowski W, del Sol A. Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks. BMC Syst Biol. 2013;7:140.

    Article  Google Scholar 

  14. Okawa S, Angarica VE, Lemischka I, Moore K, del Sol A. A differential network analysis approach for lineage specifier prediction in stem cell subpopulations. Syst Biol Appl. 2015;1:15012.

    Article  Google Scholar 

  15. Zickenrott S, Angarica VE, Upadhyaya BB, del Sol A. Prediction of disease-gene-drug relationships following a differential network analysis. Cell Death Dis. 2016;7:e2040.

    Article  Google Scholar 

  16. Marbach D, Lamparter D, Quon G, Kellis M, Kutalik Z, Bergmann S. Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases. Nat Meth. 2016;13(4):366–70.

    Article  Google Scholar 

  17. Boulesteix A-L, Strimmer K. Predicting transcription factor activities from combined analysis of microarray and ChIP data: a partial least squares approach. Theor Biol Med Model. 2005;2:23.

    Article  Google Scholar 

  18. Vickaryous MK, Hall BK. Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest. Biol Rev. 2006;81(3):425–55.

    Article  Google Scholar 

  19. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  Google Scholar 

  20. Choi J, Costa ML, Mermelstein CS, Chagas C, Holtzer S, Holtzer H. MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proc Natl Acad Sci U S A. 1990;87(20):7988–92.

    Article  Google Scholar 

  21. Caiazzo M, Giannelli S, Valente P, Lignani G, Carissimo A, Sessa A, et al. Direct conversion of fibroblasts into functional astrocytes by defined transcription factors. Stem Cell Reports. 2015;4(1):25–36.

    Article  Google Scholar 

  22. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010;463(7284):1035–41.

    Article  Google Scholar 

  23. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, et al. Induction of human neuronal cells by defined transcription factors. Nature. 2011;476(7359):220–3.

    Article  Google Scholar 

  24. Kamaraj US, Gough J, Polo JM, Petretto E, Rackham OJL. Computational methods for direct cell conversion. Cell Cycle. 2016;15(24):3343–54.

    Article  Google Scholar 

  25. del Sol A, Balling R, Hood L, Galas D. Diseases as network perturbations. Curr Opin Biotechnol. 2010;21(4):566–71.

    Article  Google Scholar 

  26. Rackham OJL, Firas J, Fang H, Oates ME, Holmes ML, Knaupp AS, et al. A predictive computational framework for direct reprogramming between human cell types. Nat Genet. 2016;48(3):331–5.

    Article  Google Scholar 

  27. The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061.

    Article  Google Scholar 

  28. Lage K, Karlberg EO, Størling ZM, Olason PI, Pedersen AG, Rigina O, et al. A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol. 2007;25:309–16.

    Article  Google Scholar 

  29. Franke L, van Bakel H, Fokkens L, de Jong ED, Egmont-Petersen M, Wijmenga C. Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am J Hum Genet. 2006;78(6):1011–25.

    Article  Google Scholar 

  30. Barabási A-L, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12(1):56–68.

    Article  Google Scholar 

  31. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006;313(5795):1929–35.

    Article  Google Scholar 

  32. Xiao Y, Gong Y, Lv Y, Lan Y, Hu J, Li F, et al. Gene Perturbation Atlas (GPA): a single-gene perturbation repository for characterizing functional mechanisms of coding and non-coding genes. Sci Rep. 2015;5:10889.

    Article  Google Scholar 

  33. Ideker T, Krogan NJ. Differential network biology. Mol Syst Biol. 2012;8(1):565.

    Google Scholar 

  34. Mitra K, Carvunis A-R, Ramesh SK, Ideker T. Integrative approaches for finding modular structure in biological networks. Nat Rev Genet. 2013;14(10):719–32.

    Article  Google Scholar 

  35. Caccavo D, Lagan B, Mitterhofer AP, Ferri GM, Afeltra A, Amoroso A, et al. Long-term treatment of systemic lupus erythematosus with cyclosporin A. Arthritis Rheum. 1997;40(1):27–35.

    Article  Google Scholar 

  36. Wells GA, Haguenauer D, Shea B, Suarez-Almazor ME, Welch V, Tugwell P, et al. Cyclosporine for treating rheumatoid arthritis. Cochrane Database Syst Rev. 1998;2(2):CD001083. https://doi.org/10.1002/14651858.CD001083.

    Article  Google Scholar 

  37. Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, et al. Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol Syst Biol. 2007;3(1):89.

    Google Scholar 

  38. Lim J, Hao T, Shaw C, Patel AJ, Szabó G, Rual J-F, et al. A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell. 2006;125(4):801–14.

    Article  Google Scholar 

  39. Kaltenbach LS, Romero E, Becklin RR, Chettier R, Bell R, Phansalkar A, et al. Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet. 2007;3(5):e82.

    Article  Google Scholar 

  40. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, et al. The NIH roadmap epigenomics mapping consortium. Nat Biotech. 2010;28(10):1045–8.

    Article  Google Scholar 

  41. ENCODE Project Consortium. The ENCODE (ENCyclopedia of DNA elements) project. Science. 2004;306(5696):636–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio del Sol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ali, M., del Sol, A. (2018). Modeling of Cellular Systems: Application in Stem Cell Research and Computational Disease Modeling. In: Alves Barbosa da Silva, F., Carels, N., Paes Silva Junior, F. (eds) Theoretical and Applied Aspects of Systems Biology. Computational Biology, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-74974-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74974-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74973-0

  • Online ISBN: 978-3-319-74974-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics