Skip to main content

Chemistry and Metabolism of Ascorbic Acid in Plants

  • Chapter
  • First Online:
Ascorbic Acid in Plant Growth, Development and Stress Tolerance

Abstract

Ascorbic acid (ascorbate/AsA/vitamin C) is one of the most abundant and versatile biomolecules in plants and animals. In particular, AsA is present in high concentrations in the chloroplasts and cytosol of plant species. In plants, AsA serves as a major antioxidant and enzyme cofactor and regulates various physiological processes including stress tolerance as well as growth, development, and signal transduction. To accomplish crucial physiological roles adequately, intracellular levels of AsA in plant cells must be tightly regulated. Recent studies have revealed the pathways for AsA biosynthesis and their regulation in plants. In addition, AsA is known to be utilized as a biosynthetic precursor in the formation of several organic acids. This chapter presents up-to-date information on the metabolic processes of AsA, including biosynthesis and degradation, which influence the intracellular concentration of AsA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agius F, Gonzalez-Lamothe R, Caballero J, Munoz-Blanco J, Botella M, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat Biotechnol 21:177–181

    Article  CAS  PubMed  Google Scholar 

  • Alhagdow M, Mounet F, Gilbert L, Nunes-Nesi A, Garcia V, Just D, Petit J, Beauvoit B, Fernie AR, Rothan C, Baldet P (2007) Silencing of the mitochondrial ascorbate synthesizing enzyme L-galactono-1,4-lactone dehydrogenase affects plant and fruit development in tomato. Plant Physiol 145:1408–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrigoni O, De Tullio MC (2000) The role of ascorbic acid in cell metabolism: between gene-directed functions and unpredictable chemical reactions. J Plant Physiol 157:481–488

    Article  CAS  Google Scholar 

  • Badejo AA, Jeong ST, Goto-Yamamoto N, Esaka M (2007) Cloning and expression of GDP-D-mannose pyrophosphorylase gene and ascorbic acid content of acerola (Malpighia glabra L.) fruit at ripening stages. Plant Physiol Biochem 45:665–672

    Article  CAS  PubMed  Google Scholar 

  • Badejo AA, Tanaka N, Esaka M (2008) Analysis of GDP-D-mannose pyrophosphorylase gene promoter from acerola (Malpighia glabra) and increase in ascorbate content of transgenic tobacco expressing the acerola gene. Plant Cell Physiol 49:126–132

    Article  CAS  PubMed  Google Scholar 

  • Badejo AA, Fujikawa Y, Esaka M (2009) Gene expression of ascorbic acid biosynthesis related enzymes of the Smirnoff-Wheeler pathway in acerola (Malpighia glabra). J Plant Physiol 166:652–660

    Article  CAS  PubMed  Google Scholar 

  • Badejo AA, Wada K, Gao YS, Maruta T, Sawa Y, Shigeoka S, Ishikawa T (2012) Translocation and the alternative D-galacturonate pathway contribute to increasing the ascorbate level in ripening tomato fruits together with the D-mannose/Lgalactose pathway. J Exp Bot 63:229–239

    Article  CAS  PubMed  Google Scholar 

  • Bánhegyi G, Loewus FA (2004) Ascorbic acid catabolism: breakdown pathways in animals and plants. In: Asard H, May JM, Smirnoff N (eds) Vitamin C: functions and biochemistry in animals and plants. BIOS Scientific Publishers Ltd, Oxford, pp 31–48

    Google Scholar 

  • Barth C, De Tullio M, Conklin PL (2006) The role of ascorbic acid in the control of flowering time and the onset of senescence. J Exp Bot 57:1657–1665

    Article  CAS  PubMed  Google Scholar 

  • Barth C, Gouzd ZA, Steele HP, Imperio RM (2010) A mutation in GDP-mannose pyrophosphorylase causes conditional hypersensitivity to ammonium, resulting in Arabidopsis root growth inhibition, altered ammonium metabolism, and hormone homeostasis. J Exp Bot 61:379–394

    Article  CAS  PubMed  Google Scholar 

  • Bartoli CG, Pastori GM, Foyer CH (2000) Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol 123:335–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartoli CG, Yu JP, Gomez F, Fernandez L, McIntosh L, Foyer CH (2006) Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. J Exp Bot 57:1621–1631

    Article  CAS  PubMed  Google Scholar 

  • Bielski BHJ (1982) Chemistry of ascorbic acid radicals. In: Seib PA, Tolbert BM (eds) Ascorbic acid: chemistry, metabolism and uses, vol 200. American Chemical Society, Washington, DC, pp 81–100

    Chapter  Google Scholar 

  • Bulley S, Laing W (2016) The regulation of ascorbate biosynthesis. Curr Opin Plant Biol 33:15–22

    Article  CAS  PubMed  Google Scholar 

  • Bulley SM, Rassam M, Hoser D, Otto W, Schünemann N, Wright M, MacRae E, Gleave A, Laing W (2009) Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. J Exp Bot 60:765–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulley S, Wright M, Rommens C, Yan H, Rassam M, Lin-Wang K, Andre C, Brewster D, Karunairetnam S, Allan AC, Laing WA (2012) Enhancing ascorbate in fruits and tubers through over-expression of the L-galactose pathway gene GDP-L-galactose phosphorylase. Plant Biotechnol J 10:390–397

    Article  CAS  PubMed  Google Scholar 

  • Burns JJ (1967) Ascorbic acid. In: Greenberg DM (ed) Metabolic pathways, vol 1, 3rd edn. Academic Press, New York, pp 394–411

    Chapter  Google Scholar 

  • Conklin PL, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ 27:959–970

    Article  CAS  Google Scholar 

  • Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci U S A 93:9970–9974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conklin PL, Pallanca JE, Last RL, Smirnoff N (1997) L-ascorbic acid metabolism in the ascorbate-deficient arabidopsis mutant vtc1. Plant Physiol 115:1277–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N, Last RL (1999) Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc Natl Acad Sci U S A 96:4198–4203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conklin PL, Saracco SA, Norris SR, Last RL (2000) Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 154:847–856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conklin PL (2001) Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant Cell Environ 24:383–394

    Article  CAS  Google Scholar 

  • Conklin PL, Gatzek S, Wheeler GL, Dowdle J, Raymond MJ, Rolinski S, Isupov M, Littlechild JA, Smirnoff N (2006) Arabidopsis thaliana VTC4 encodes L-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme. J Biol Chem 281:15662–15670

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Rus E, Amaya I, Sanchez-Sevilla JF, Botella MA, Valpuesta V (2011) Regulation of L-ascorbic acid content in strawberry fruits. J Exp Bot 62:4191–4201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davey MW, Van Montagu M, Inze D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJJ, Strain JJ, Favell D, Fletcher J (2000) Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric 80:825–860

    Article  CAS  Google Scholar 

  • DeBolt S, Hardie J, Tyerman S, Ford CM (2004) Composition and synthesis of raphide crystals and druse crystals in berries of Vitis vinifera L. cv. Cabernet sauvignon: ascorbic acid as precursor for both oxalic and tartaric acids as revealed by radiolabelling studies. Aust J Grape Wine Res 10:134–142

    Article  CAS  Google Scholar 

  • DeBolt S, Cook DR, Ford CM (2006) L-tartaric acid synthesis from vitamin C in higher plants. Proc Natl Acad Sci U S A 103:5608–5613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debolt S, Melino V, Ford CM (2007) Ascorbate as a biosynthetic precursor in plants. Ann Bot 99:3–8

    Article  CAS  PubMed  Google Scholar 

  • Di Matteo A, Sacco A, Anacleria M, Pezzotti M, Delledonne M, Ferrarini A, Frusciante L, Barone A (2010) The ascorbic acid content of tomato fruits is associated with the expression of genes involved in pectin degradation. BMC Plant Biol 10:163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N (2007) Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J 52:673–689

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  CAS  PubMed  Google Scholar 

  • Foyer C, Rowell J, Walker D (1983) Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta 157:239–244

    Article  CAS  PubMed  Google Scholar 

  • Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Annu Rev Plant Biol 56:41–71

    Article  CAS  PubMed  Google Scholar 

  • Fujiki Y, Yoshikawa Y, Sato T, Inada N, Ito M, Nishida I, Watanabe A (2001) Dark-inducible genes from Arabidopsis thaliana are associated with leaf senescence and repressed by sugars. Physiol Plant 111:345–352

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Nishikawa H, Badejo AA, Shibata H, Sawa Y, Nakagawa T, Maruta T, Shigeoka S, Smirnoff N, Ishikawa T (2011) Expression of aspartyl protease and C3HC4-type RING zinc finger genes are responsive to ascorbic acid in Arabidopsis thaliana. J Exp Bot 62:3647–3657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatzek S, Wheeler GL, Smirnoff N (2002) Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated L-galactose synthesis. Plant J 30:541–553

    Article  CAS  PubMed  Google Scholar 

  • Gest N, Gautier H, Stevens R (2013) Ascorbate as seen through plant evolution: the rise of a successful molecule? J Exp Bot 64:33–53

    Article  CAS  PubMed  Google Scholar 

  • Green MA, Fry SC (2005) Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate. Nature 433:83–87

    Article  CAS  PubMed  Google Scholar 

  • Grün M, Loewus FA (1984) L-Ascorbic-acid biosynthesis in the euryhaline diatom Cyclotella cryptica. Planta 160:6–11

    Article  PubMed  Google Scholar 

  • Hancock RD, Viola R (2005a) Improving the nutritional value of crops through enhancement of L-ascorbic acid (vitamin C) content: rationale and biotechnological opportunities. J Agric Food Chem 53:5248–5257

    Article  CAS  PubMed  Google Scholar 

  • Hancock RD, Viola R (2005b) Biosynthesis and catabolism of L-ascorbic acid in plants. Crit Rev Plant Sci 24:167–188

    Article  CAS  Google Scholar 

  • Hancock RD, Walker PG, Pont SDA, Marquis N, Vivera S, Gordon SL, Brennan RM, Viola R (2007) L-Ascorbic acid accumulation in fruit of Ribes nigrum occurs by in situ biosynthesis via the L-galactose pathway. Funct Plant Biol 34:1080–1091

    Article  CAS  Google Scholar 

  • Heazlewood JL, Howell KA, Millar AH (2003) Mitochondrial complex I from Arabidopsis and rice: orthologs of mammalian and fungal components coupled with plant-specific subunits. Biochim Biophys Acta 1604:159–169

    Article  CAS  PubMed  Google Scholar 

  • Helsper JP, Loewus FA (1982) Metabolism of L-threonic acid in Rumex x acutus L. and Pelargonium crispum (L.) L’Hér. Plant Physiol 69:1365–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helsper JP, Kagan L, Hilby CL, Maynard TM, Loewus FA (1982) L-Ascorbic acid biosynthesis in Ochromonas danica. Plant Physiol 69:465–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horner HT, Wagner BL (1995) Calcium oxalate formation in higher plants. In: Khan SR (ed) Calcium oxalate in biological systems. CRC Press, Boca Raton, FL, pp 53–72

    Google Scholar 

  • Iland PG, Coombe BG (1988) Malate, tartrate, potassium, and sodium in flesh and skin of Shiraz grapes during ripening: concentration and compartmentation. Am J Enol Vitic 39:71–76

    CAS  Google Scholar 

  • Imai T, Karita S, Shiratori G, Hattori M, Nunome T, Oba K, Hirai M (1998) L-galactono-γ-lactone dehydrogenase from sweet potato: purification and cDNA sequence analysis. Plant Cell Physiol 39:1350–1358

    Article  CAS  PubMed  Google Scholar 

  • Imai T, Ban Y, Terakami S, Yamamoto T, Moriguchi T (2009) L-Ascorbate biosynthesis in peach: cloning of six L-galactose pathwayrelated genes and their expression during peach fruit development. Physiol Planta 136:139–149

    Article  CAS  Google Scholar 

  • Ioannidi E, Kalamaki MS, Engineer C, Pateraki I, Alexandrou D, Mellidou I, Giovannonni J, Kanellis AK (2009) Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. J Exp Bot 60:663–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem 72:1143–1154

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa T, Dowdle J, Smirnoff N (2006a) Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiol Plant 126:343–355

    Article  CAS  Google Scholar 

  • Ishikawa T, Masumoto I, Iwasa N, Nishikawa H, Sawa Y, Shibata H, Nakamura A, Yabuta Y, Shigeoka S (2006b) Functional characterization of D-galacturonic acid reductase, a key enzyme of the ascorbate biosynthesis pathway, from Euglena gracilis. Biosci Biotechnol Biochem 70:2720–2726

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa T, Nishikawa H, Gao Y, Sawa Y, Shibata H, Yabuta Y, Maruta T, Shigeoka S (2008) The pathway via D-galacturonate/L-galactonate is significant for ascorbate biosynthesis in Euglena gracilis: identification and functional characterization of aldonolactonase. J Biol Chem 283:31133–31141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain AK, Nessler CL (2000) Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol Breed 6:73–78

    Article  CAS  Google Scholar 

  • Keller R, Renz FS, Kossmann J (1999) Antisense inhibition of the GDP-mannose pyrophosphorylase reduces the ascorbate content in transgenic plants leading to developmental changes during senescence. Plant J 19:131–141

    Article  CAS  PubMed  Google Scholar 

  • Kempinski CF, Haffar R, Barth C (2011) Toward the mechanism of NH4+ sensitivity mediated by Arabidopsis GDP-mannose pyrophosphorylase. Plant Cell Environ 34:847–858

    Article  CAS  PubMed  Google Scholar 

  • Kerchev PI, Pellny TK, Vivancos PD, Kiddle G, Hedden P, Driscoll S, Vanacker H, Verrier P, Hancock RD, Foyer CH (2011) The transcription factor ABI4 is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis. Plant Cell 23:3319–3334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laing WA, Bulley S, Wright M, Cooney J, Jensen D, Barraclough D, MacRae E (2004) A highly specific L-galactose-1-phosphate phosphatase on the path to ascorbate biosynthesis. Proc Natl Acad Sci U S A 101:16976–16981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laing WA, Wright MA, Cooney J, Bulley SM (2007) The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. Proc Natl Acad Sci U S A 104:9534–9539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laing WA, Martínez-Sánchez M, Wright MA, Bulley SM, Brewster D, Dare AP, Rassam M, Wang D, Storey R, Macknight RC, Hellens RP (2015) An upstream open reading frame is essential for feedback regulation of ascorbate biosynthesis in Arabidopsis. Plant Cell 27:772–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leferink NG, van den Berg WA, van Berkel WJ (2008) L-Galactono-γ-lactone dehydrogenase from Arabidopsis thaliana, a flavoprotein involved in vitamin C biosynthesis. FEBS J 275:713–726

    Article  CAS  PubMed  Google Scholar 

  • Li M, Ma F, Shang P, Zhang M, Hou C, Liang D (2009) Influence of light on ascorbate formation and metabolism in apple fruits. Planta 230:39–51

    Article  CAS  PubMed  Google Scholar 

  • Li M, Ma F, Liang D, Li J, Wang Y (2010) Ascorbate biosynthesis during early fruit development is the main reason for its accumulation in kiwi. PLoS One 5:e14281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim B, Smirnoff N, Cobbett CS, Golz JF (2016) Ascorbate-deficient vtc2 mutants in Arabidopsis do not exhibit decreased growth. Front Plant Sci 13:1025

    Google Scholar 

  • Linster CL, Clarke SG (2008) L-Ascorbate biosynthesis in higher plants: the role of VTC2. Trends Plant Sci 13:567–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linster CL, Gomez TA, Christensen KC, Adler LN, Young BD, Brenner C, Clarke SG (2007) Arabidopsis VTC2 encodes a GDP-L-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants. J Biol Chem 282:18879–18885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linster CL, Adler LN, Webb K, Christensen KC, Brenner C, Clarke SG (2008) A second GDP-L-galactose phosphorylase in Arabidopsis en route to vitamin C: covalent intermediate and substrate requirements for the conserved reaction. J Biol Chem 283:18483–18492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loach PA (1976) Physical and chemical data. In: Fasman GD (ed) Handbook of biochemistry and molecular biology, vol 1, 3rd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Loewus FA (1999) Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry 52:193–210

    Article  CAS  Google Scholar 

  • Lorence A, Chevone BI, Mendes P, Nessler CL (2004) myo-Inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol 134:1200–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukowitz W, Nickle TC, Meinke DW, Last RL, Conklin PL, Somerville CR (2001) Arabidopsis cyt1 mutants are deficient in a mannose-1-phosphate guanylyltransferase and point to a requirement of N-linked glycosylation for cellulose biosynthesis. Proc Natl Acad Sci U S A 98:2262–2267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruta T, Yonemitsu M, Yabuta Y, Tamoi M, Ishikawa T, Shigeoka S (2008) Arabidopsis phosphomannose isomerase 1, but not phosphomannose isomerase 2, is essential for ascorbic acid biosynthesis. J Biol Chem 283:28842–28851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruta T, Ichikawa Y, Mieda T, Takeda T, Tamoi M, Yabuta Y, Ishikawa T, Shigeoka S (2010) The contribution of Arabidopsis homologs of L-gulono-1,4-lactone oxidase to the biosynthesis of ascorbic acid. Biosci Biotechnol Biochem 74:1494–1497

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Kitagawa Y, Okumura M, Shigeta Y, Melino VJ, Soole KL, Ford CM (2015) Accurate standard hydrogen electrode potential and applications to the redox potentials of vitamin C and NAD/NADH. J Phys Chem A 119:369–376

    Article  CAS  PubMed  Google Scholar 

  • McNair JB (1932) The intersection between substances in plants: essential oils and resins, cyanogen and oxalate. Am J Bot 19:255–271

    Article  CAS  Google Scholar 

  • Melino VJ, Soole KL, Ford CM (2009) Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries. BMC Plant Biol 9:145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mieda T, Yabuta Y, Rapolu M, Motoki T, Takeda T, Yoshimura K, Ishikawa T, Shigeoka S (2004) Feedback inhibition of spinach L-galactose dehydrogenase by L-ascorbate. Plant Cell Physiol 45:1271–1279

    Article  CAS  PubMed  Google Scholar 

  • Müller-Moulé P, (2008) An expression analysis of the ascorbate biosynthesis enzyme VTC2. Plant Mol Biol 68:31–41

    Google Scholar 

  • Nakata PA (2003) Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci 164:901–909

    Article  CAS  Google Scholar 

  • Niki E (1991) Action of ascorbic acid as a scavenger of active and stable oxygen radicals. Am J Clin Nutr 54:1119S–1124S

    Article  CAS  PubMed  Google Scholar 

  • Nishikimi M, Yagi K (1996) Biochemistry and molecular biology of ascorbic acid biosynthesis. Subcell Biochem 25:17–39

    Article  CAS  PubMed  Google Scholar 

  • Noctor G (2006) Metabolic signalling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ 29:409–425

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Oba K, Ishikawa S, Nishikawa M, Mizuno H, Yamamoto T (1995) Purification and properties of L-galactono-γ-lactone dehydrogenase, a key enzyme for ascorbic acid biosynthesis, from sweet potato roots. J Biochem 117:120–124

    Article  CAS  PubMed  Google Scholar 

  • Østergaard J, Persiau G, Davey MW, Bauw G, Van Montagu M (1997) Isolation of a cDNA coding for L-galactono-γ-lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants. Purification, characterization, cDNA cloning, and expression in yeast. J Biol Chem 272:30009–30016

    Article  PubMed  Google Scholar 

  • Pallanca JE, Smirnoff N (2000) The control of ascorbic acid synthesis and turnover in pea seedlings. J Exp Bot 51:669–674

    Article  CAS  PubMed  Google Scholar 

  • Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15:939–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pineau B, Layoune O, Danon A, De Paepe R (2008) L-Galactono-1,4-lactone dehydrogenase is required for the accumulation of plant respiratory complex I. J Biol Chem 283:32500–32505

    Article  CAS  PubMed  Google Scholar 

  • Qian W, Yu C, Qin H, Liu X, Zhang A, Johansen IE, Wang D (2007) Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana. Plant J 49:399–413

    Article  CAS  PubMed  Google Scholar 

  • Qin C, Qian W, Wang W, Wu Y, Yu C, Jiang X, Wang D, Wu P (2008) GDP-mannose pyrophosphorylase is a genetic determinant of ammonium sensitivity in Arabidopsis Thaliana. Proc Natl Acad Sci U S A 105:18308–18313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rautenkranz A, Li L, Machler F, Martinoia E, Oertli JJ (1994) Transport of ascorbic and dehydroascorbic acids across protoplast and vacuole membranes isolated from barley (Hordeum vulgare L. cv Gerbel) leaves. Plant Physiol 106:187–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Running JA, Burlingame RP, Berry A (2003) The pathway of L-ascorbic acid biosynthesis in the colourless microalga Prototheca moriformis. J Exp Bot 54:1841–1849

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Kasai Z (1969) Tartaric acid synthesis from L-ascorbic acid- 1-14C in grape berries. Phytochemistry 8:2177–2182

    Article  CAS  Google Scholar 

  • Saito K, Kasai Z (1982) Conversion of L-ascorbic acid to L-idonic acid, L-idono-γ-lactone and 2-keto-L-idonic acid in slices of immature grapes. Plant Cell Physiol 23:499–507

    Article  CAS  Google Scholar 

  • Saito K, Kasai Z (1984) Synthesis of L-(+)-tartaric acid from L-ascorbic acid via 5-Keto-D-gluconic acid in grapes. Plant Physiol 76:170–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito K, Ohmoto J, Kuriha N (1997) Incorporation of 18O into oxalic, L-threonic and L-tartaric acids during cleavage of L-ascorbic and 5-keto-D-gluconic acids in plants. Phytochemistry 44:805–809

    Article  CAS  Google Scholar 

  • Sakamoto S, Fujikawa Y, Tanaka N, Esaka M (2012) Molecular cloning and characterization of L-galactose-1-phosphate phosphatase from tobacco (Nicotiana tabacum). Biosci Biotechnol Biochem 76:1155–1162

    Article  CAS  PubMed  Google Scholar 

  • Schertl P, Sunderhaus S, Klodmann J, Grozeff GE, Bartoli CG, Braun HP (2012) L-Galactono-1,4-lactone dehydrogenase (GLDH) forms part of three subcomplexes of mitochondrial complex I in Arabidopsis thaliana. J Biol Chem 287:14412–14419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schimmeyer J, Bock R, Meyer EH (2016) L-Galactono-1,4-lactone dehydrogenase is an assembly factor of the membrane arm of mitochondrial complex I in Arabidopsis. Plant Mol Biol 90:117–126

    Article  CAS  PubMed  Google Scholar 

  • Sharples SC, Fry SC (2007) Radioisotope ratios discriminate between competing pathways of cell wall polysaccharide and RNA biosynthesis in living plant cells. Plant J 52:252–262

    Article  CAS  PubMed  Google Scholar 

  • Shigeoka S, Maruta T (2014) Cellular redox regulation, signaling, and stress response in plants. Biosci Biotechnol Biochem 78:1457–1470

    Article  CAS  PubMed  Google Scholar 

  • Shigeoka S, Nakano Y, Kitaoka S (1979a) The biosynthetic pathway of L-ascorbic acid in Euglena gracilis z. J Nutr Sci Vitaminol 25:299–307

    Article  CAS  PubMed  Google Scholar 

  • Shigeoka S, Nakano Y, Kitaoka S (1979b) Some properties and subcellular localization of L-gulono-γ-lactone dehydrogenase in Euglena gracilis z. Agric Biol Chem 43:2187–2188

    CAS  Google Scholar 

  • Siendones E, Gonzalez-Reyes JA, Santos-Ocana C, Navas P, C rdoba F (1999) Biosynthesis of ascorbic acid in kidney bean. L-galactono-γ-lactone dehydrogenase is an intrinsic protein located at the mitochondrial inner membrane. Plant Physiol 120:907–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnoff N (2000a) Ascorbate biosynthesis and function in photoprotection. Philos Trans R Soc Lond Ser B Biol Sci 355:1455–1464

    Article  CAS  Google Scholar 

  • Smirnoff N (2000b) Ascorbic acid: metabolism and functions of a multifaceted molecule. Curr Opin Plant Biol 3:229–235

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35:291–314

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N, Conklin PL, Loewus FA (2001) Biosynthesis of ascorbic acid in plants: a renaissance. Annu Rev Plant Physiol Plant Mol Biol 52:437–467

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N, Gatzek S (2004) Ascorbate biosynthesis: a diversity of pathways. In: Asard H, May JM, Smirnoff N (eds) Vitamin C: functions and biochemistry in animals and plants. BIOS Scientific Publishers Ltd, Oxford, pp 7–29

    Google Scholar 

  • Stafford HA (1959) Distribution of tartaric acid in the leaves of certain angiosperms. Am J Bot 46:347–352

    Article  CAS  Google Scholar 

  • Sturgeon BE, Sipe HJ Jr, Barr DP, Corbett JT, Martinez JG, Mason RP (1998) The fate of the oxidizing tyrosyl radical in the presence of glutathione and ascorbate. Implications for the radical sink hypothesis. J Biol Chem 273:30116–30121

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Maruta T, Ogawa T, Tanabe N, Tamoi M, Yoshimura K, Shigeoka S (2015) Identification and characterization of AtNUDX9 as a GDP-D-mannose pyrophosphohydrolase: its involvement in root growth inhibition in response to ammonium. J Exp Bot 66:5797–5808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torabinejad J, Donahue JL, Gunesekera BN, Allen-Daniels MJ, Gillaspy GE (2009) VTC4 is a bifunctional enzyme that affects myoinositol and ascorbate biosynthesis in plants. Plant Physiol 150:951–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchiya J, Yamada T, Niki E, Kamiya Y (1985) Interaction of galvinoxyl radical with ascorbic acid, cysteine and glutathione in homogeneous solution and in aqueous dispersions. Bull Chem Soc Jpn 58:326–330

    Article  CAS  Google Scholar 

  • Urzica EI, Adler LN, Page MD, Linster CL, Arbing MA, Casero D, Pellegrini M, Merchant SS, Clarke SG (2012) Impact of oxidative stress on ascorbate biosynthesis in Chlamydomonas via regulation of the VTC2 gene encoding a GDP-L-galactose phosphorylase. J Biol Chem 287:14234–14245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valpuesta V, Botella MA (2004) Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. Trends Plant Sci 9:573–577

    Article  CAS  PubMed  Google Scholar 

  • Wagner G, Loewus F (1973) The biosynthesis of (+)-tartaric acid in Pelargonium crispum. Plant Physiol 52:651–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner C, Sefkow M, Kopka J (2003) Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profile. Phytochemistry 62:887–900

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Yu Y, Zhang Z, Quan R, Zhang H, Ma L, Deng XW, Huang R (2013) Arabidopsis CSN5B interacts with VTC1 and modulates ascorbic acid synthesis. Plant Cell 25:625–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369

    Article  CAS  PubMed  Google Scholar 

  • Wheeler G, Ishikawa T, Pornsaksit V, Smirnoff N (2015) Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes. elife 4:e06369

    PubMed Central  Google Scholar 

  • Wolucka BA, Van Montagu M (2003) GDP-mannose 3′,5′-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem 278:47483–47490

    Article  CAS  PubMed  Google Scholar 

  • Wolucka BA, Van Montagu M (2007) The VTC2 cycle and the de novo biosynthesis pathways for vitamin C in plants: an opinion. Phytochemistry 68:2602–2613

    Article  CAS  PubMed  Google Scholar 

  • Wolucka BA, Persiau G, Van Doorsselaere J, Davey MW, Demol H, Vandekerckhove J, Van Montagu M, Zabeau M, Boerjan W (2001) Partial purification and identification of GDP-mannose 3′,5′-epimerase of Arabidopsis thaliana, a key enzyme of the plant vitamin C pathway. Proc Natl Acad Sci U S A 98:14843–14848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yabuta Y, Yoshimura K, Takeda T, Shigeoka S (2000) Molecular characterization of tobacco mitochondrial L-galactono-γ-lactone dehydrogenase and its expression in Escherichia coli. Plant Cell Physiol 41:666–675

    Article  CAS  PubMed  Google Scholar 

  • Yabuta Y, Mieda T, Rapolu M, Nakamura A, Motoki T, Maruta T, Yoshimura K, Ishikawa T, Shigeoka S (2007) Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. J Exp Bot 58:2661–2671

    Article  CAS  PubMed  Google Scholar 

  • Yang JC, Loewus FA (1975) Metabolic conversion of L-ascorbic-acid to oxalic-acid in oxalateaccumulating plants. Plant Physiol 56:283–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XY, Xie JX, Wang FF, Zhong J, Liu YZ, Li GH, Peng SA (2011) Comparison of ascorbate metabolism in fruits of two citrus species with obvious difference in ascorbate content in pulp. J Plant Physiol 68:2196–2205

    Article  CAS  Google Scholar 

  • Yoshimura K, Nakane T, Kume S, Shiomi Y, Maruta T, Ishikawa T, Shigeoka S (2014) Transient expression analysis revealed the importance of expression level in light/dark regulation of ascorbate biosynthesis in Arabidopsis. Biosci Biotechnol Biochem 78:60–66

    Article  CAS  PubMed  Google Scholar 

  • Zechmann B, Stumpe M, Mauch F (2011) Immunocytochemical determination of the subcellular distribution of ascorbate in plants. Planta 233:1–12

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Dong S (2004) The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of camphorsulfonic acid. J Electroanal Chem 568:189–194

    Article  CAS  Google Scholar 

  • Zhang W, Gruszewski HA, Chevone BI, Nessler CL (2008) An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiol 146:431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Liu L (2016) Expression and crystallographic studies of the Arabidopsis thaliana GDP-D-mannose pyrophosphorylase VTC1. Acta Crystallogr F Struct Biol Commun 72:795–798

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the Ministry of Education, Culture, Sports, Science, and Technology of Japan [Grant-in-Aid for Scientific Research (B) (to K.Y and T.I: 17H03807)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Yoshimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yoshimura, K., Ishikawa, T. (2017). Chemistry and Metabolism of Ascorbic Acid in Plants. In: Hossain, M., Munné-Bosch, S., Burritt, D., Diaz-Vivancos, P., Fujita, M., Lorence, A. (eds) Ascorbic Acid in Plant Growth, Development and Stress Tolerance. Springer, Cham. https://doi.org/10.1007/978-3-319-74057-7_1

Download citation

Publish with us

Policies and ethics