Skip to main content

Homeostasis from a Time-Series Perspective: An Intuitive Interpretation of the Variability of Physiological Variables

  • Chapter
  • First Online:
Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues

Abstract

Homeostasis implies the approximate constancy of specific regulated variables, where the independence of the internal from the external environment is ensured by adaptive physiological responses carried out by other so-called effector variables. The loss of homeostasis is the basis to understand chronic-degenerative disease and age-associated frailty. Technological advances presently allow to monitor a large variety of physiological variables in a non-invasive and continuous way and the statistics of the resulting physiological time series is thought to reflect the dynamics of the underlying control mechanisms. Recent years have seen an increased interest in the variability and/or complexity analysis of physiological time series with possible applications in pathophysiology. However, a general understanding is lacking for which variables variability is an indicator of good health (e.g., heart rate variability) and when on the contrary variability implies a risk factor (e.g., blood pressure variability). In the present contribution, we argue that in optimal conditions of youth and health regulated variables and effector variables necessarily exhibit very different statistics, with small and large variances, respectively, and that under adverse circumstances such as ageing and/or chronic-degenerative disease these statistics degenerate in opposite directions, i.e. towards an increased variability in the case of regulated variables and towards a decreased variability for effector variables. We demonstrate this hypothesis for a simple mathematical model of a thermostat, and for blood pressure and body temperature homeostasis for healthy controls and patients with metabolic disease, and suggest that this scheme may explain the general phenomenology of physiological variables of homeostatic regulatory mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The skin of course does have its own thermosensors, but they are part of a reflex loop and not of a local homeostatic control loop: when touching something extremely warm or cold, there will be an automatic reaction to move the fingers away, but not a physiological response to locally cool off or warm up the skin to maintain a constant skin temperature.

References

  1. Modell H, Cliff W, Michael J, McFarland J, Wenderoth MP, Wright A (2015) A physiologist’s view of homeostasis. Adv Physiol Educ 39:259–266

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bernard C (1957) Introduction à l’étude de la Médecine Expérimentale. J.B. Baillière et Fils, Paris; 1865 (English Translation by Greene HC, Dover, New York, NY, 1957)

    Google Scholar 

  3. Gross CG (2009) Three before their time: neuroscientists whose ideas were ignored by their contemporaries. Exp Brain Res 192:321–34

    Article  PubMed  Google Scholar 

  4. Cannon WB (1963) The wisdom of the body, revised and enlarged edition (first published 1939). W.W. Norton & Co, New York, NY

    Google Scholar 

  5. Wiener N (1961) Cybernetics or the control and communication in the animal and the machine, 2nd edn. MIT Press, Cambridge

    Google Scholar 

  6. Schneck DJ (1987) Feedback control and the concept of homeostasis. Math Model 9:889–900

    Article  Google Scholar 

  7. Ramsay DS, Woods SC (2014) Clarifying the roles of homeostasis and allostasis in physiological regulation. Psychol Rev 121(2):225–247

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mangum CP, Towle DW (1977) Physiological adaptation to unstable environments. Am Sci 65:67–75

    CAS  PubMed  Google Scholar 

  9. Moore-Ede MC (1986) Physiology of the circadian timing system: predictive versus reactive homeostasis. Am J Physiol 250(5 Pt 2):R737–R752

    CAS  PubMed  Google Scholar 

  10. Bauman, DE (2000) Regulation of nutrient partitioning during lactation: homeostasis and homeorhesis revisited. In: Cronjé P, Boomker EA (eds) Ruminant physiology: digestion, metabolism, growth, and reproduction. CABI Pub, Wallingford, Oxon, pp 311–328

    Chapter  Google Scholar 

  11. Bauman DE, Currie WB (1980) Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis and homeorhesis. J Dairy Sci 63(9):1514–1529

    Article  CAS  PubMed  Google Scholar 

  12. Waddington CH (1957) The strategy of the genes; a discussion of some aspects of theoretical biology. Allen & Unwin, London

    Google Scholar 

  13. Waddington, CH (1968) Towards a theoretical biology; an IUBS symposium (International Union of Biological Sciences), vol. 1. Edinburgh University Press, Edinburgh (prolegomena)

    Google Scholar 

  14. Nicolaidis S (2011) Metabolic and humoral mechanisms of feeding and genesis of the ATP/ADP/AMP concept. Physiol Behav 104(1):8–14

    Article  CAS  PubMed  Google Scholar 

  15. Soodak H, Iberall A (1978) Homeokinetics: a physical science for complex systems. Science 201(4356):579–582

    Article  CAS  PubMed  Google Scholar 

  16. Mrosovsky N (1990) Rheostasis: the physiology of change. Oxford University Press, New York

    Google Scholar 

  17. Yates FE (1982) The 10th J. A. F. Stevenson memorial lecture. Outline of a physical theory of physiological systems. Can J Physiol Pharmacol 60(3):217–248

    CAS  Google Scholar 

  18. Yates FE (1994) Order and complexity in dynamical-systems - homeodynamics as a generalized mechanics for biology. Math Comput Model 19(6–8):49–74

    Article  Google Scholar 

  19. Yates FE (2008) Homeokinetics/homeodynamics: a physical heuristic for life and complexity. Ecol Psychol 20(2):148–179

    Article  Google Scholar 

  20. Chilliard Y (1986) Bibliographic review: quantitative variations and metabolism of lipids in adipose tissue and the liver during the gestation-lactation cycle. 1. In the rat. Reprod Nutr Dev 26(5A):1057–1103

    Article  CAS  PubMed  Google Scholar 

  21. Chilliard Y, Ferlay A, Faulconnier Y, Bonnet M, Rouel J, Bocquier F (2000) Adipose tissue metabolism and its role in adaptations to undernutrition in ruminants. Proc Nutr Soc 59(1):127–134

    Article  CAS  PubMed  Google Scholar 

  22. Kuenzel WJ, Beck MM, Teruyama R (1999) Neural sites and pathways regulating food intake in birds: a comparative analysis to mammalian systems. J Exp Zool 283(4–5):348–364

    Article  CAS  PubMed  Google Scholar 

  23. Selye H (1973) Homeostasis and heterostasis. Perspect Biol Med 16(3):441–445

    Article  CAS  PubMed  Google Scholar 

  24. Berntson GG, Cacioppo JT (2000) From homeostasis to allodynamic regulation. In: Cacioppo JT, Tassinary LG, Berntson GG (eds) Handbook of psychophysiology, vol 2. Cambridge University Press, Cambridge, pp 459–481

    Google Scholar 

  25. Berntson GG, Cacioppo JT (2007) Integrative physiology: homeostasis, allostasis, and the orchestration of systemic physiology. In: Cacioppo JT, Tassinary LG, Berntson GG (eds) Handbook of psychophysiology, vol 3. Cambridge University Press, Cambridge, pp 433–452

    Chapter  Google Scholar 

  26. Sterling P (2004) Principles of allostasis: optimal design, predictive regulation, pathophysiology, and rational therapeutics. In: Schulkin J (ed) Allostasis, homeostasis and the costs of physiological adaptation. Cambridge University Press, New York, pp 17–64

    Chapter  Google Scholar 

  27. Sterling P (2012) Allostasis: a model of predictive regulation. Physiol Behav 106(1):5–15

    Article  CAS  PubMed  Google Scholar 

  28. Sterling P, Eyer J (1988) Allostasis: a new paradigm to explain arousal pathology. In: Fisher S, Reason JT (eds) Handbook of life stress, cognition, and health. Wiley, Chichester, pp 629–649

    Google Scholar 

  29. Carpenter RHS (2004) Homeostasis: a plea for a unified approach. Adv Physiol Educ 28:S180–S187

    Article  Google Scholar 

  30. Day TA (2005) Defining stress as a prelude to mapping its neurocircuitry: no help from allostasis. Prog Neuro-Psychopharmacol Biol Psychiatry 29:1195–1200

    Article  Google Scholar 

  31. Goldberger AL, Rigney DR, West BJ (1992) Chaos and fractals in human physiology. Sci Am 262:34–41

    Google Scholar 

  32. Seely AJE, Macklem PT (2004) Complex systems and the technology of variability analysis. Crit Care 8:R367

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chaudhary B, Dasti S, Park Y, Brown T, Davis H, Akhtar B (1998) Hour-to-hour variability of oxygen saturation in sleep apnea. Chest 113(3):719–722

    Article  CAS  PubMed  Google Scholar 

  34. Churruca J, Vigil L, Luna E, Ruiz-Galiana J, Varela M (2008) The route to diabetes: loss of complexity in the glycemic profile from health through the metabolic syndrome to type 2 diabetes. Diabetes Metab Syndr Obes 1:3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gardner JD, Young W, Sloan S, Robinson M, Miner PB Jr (2005) The fractal nature of human gastro-oesophageal reflux. Aliment Pharmacol Ther 22:823–830

    Article  CAS  PubMed  Google Scholar 

  36. Garrett DD, Samanez-Larkin GR, MacDonald SWS, Lindenberger U, McIntosh AR, Gradye CL (2013) Moment-to-moment brain signal variability: a next frontier in human brain mapping? Neurosci Biobehav Rev 37:610–624

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hausdorff JM (2005) Gait variability: methods, modeling and meaning. J NeuroEng Rehabil 2:19

    Article  PubMed  PubMed Central  Google Scholar 

  38. Malik M et al (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J 17:354–381

    Article  Google Scholar 

  39. Parati G, Ochoa JE, Lombardi C, Bilo G (2013) Assessment and management of blood-pressure variability. Nat Rev Cardiol 10:143–155

    Article  PubMed  Google Scholar 

  40. Papaioannou V, Pneumatikos I (2012) Fractal physiology, breath-to-breath variability and respiratory diseases: an introduction to complex systems theory application in pulmonary and critical care medicine. In: Andrade AO, Alves Pereira A, Naves ELM, Soares AB (eds) Practical applications in biomedical engineering, Chap 3. ISBN 978-953-51-0924-2, Published: January 9, 2013 under CC BY 3.0 license

    Google Scholar 

  41. Varela M, Calvo M, Chana M, Gomez-Mestre I, Asensio R, Galdos P (2005) Clinical implications of temperature curve complexity in critically ill patients. Crit Care Med 33(12):2764–2771

    Article  PubMed  Google Scholar 

  42. Fossion R, Stephens CR, García-Pelagio DP, García-Iglesias L (2017) Data mining and time-series analysis as two complementary approaches to study body temperature in obesity. In: Proceedings of DH’17, London, UK, July 02–05, 2017, p 5

    Google Scholar 

  43. Kelly G (2006) Body temperature variability (part 1): a review of the history of body temperature and its variability due to site selection, biological rhythms, fitness, and aging. Altern Med Rev 11(4):278–293

    PubMed  Google Scholar 

  44. Kelly G (2006) Body temperature variability (part 2): masking influences of body temperature variability and a review of body temperature variability in disease. Altern Med Rev 12(1):49–62

    Google Scholar 

  45. Visnovcova Z, Mestanika M, Galac M, Mestanikova A, Tonhajzerova I (2016) The complexity of electrodermal activity is altered in mental cognitive stressors. Comput Biol Med 79:123–129

    Article  PubMed  Google Scholar 

  46. Yamagata M, Ikezoe T, Kamiya M, Masaki M, Ichihashi N (2017) Correlation between movement complexity during static standing and balance function in institutionalized older adults. Clin Interv Aging 12:499–503

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hu K, Ivanov PCh, Chen Z, Hilton MF, Stanley HE, Shea SA (2009) Non-random fluctuations and multi-scale dynamics regulation of human activity. Proc Natl Acad Sci USA 106(8):2490–2494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ivanov PCh, Hu K, Hilton MF, Shea SA, Stanley HE (2007) Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics. Proc Natl Acad Sci USA 104(52):20702–20707

    Article  PubMed  Google Scholar 

  49. Hu K, Van Someren EJW, Shea SA, Scheer FAJL (2009) Reduction of scale invariance of activity fluctuations with aging and Alzheimer’s disease: Involvement of the circadian pacemaker. Proc Natl Acad Sci USA 106(8):2490–2494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fossion R, Rivera AL, Toledo-Roy JC, Ellis J, Angelova A (2017) Multiscale adaptive analysis of circadian rhythms and intradaily variability: application to actigraphy time series in acute insomnia subjects. PLoS One 12(7):e0181762. https://doi.org/10.1371/journal.pone.0181762

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fossion R, Sáenz A, Zapata-Fonseca L (accepted) On the stability and adaptability of human physiology: Gaussians meet heavy-tailed distributions. INTERdisciplina (CEIICH-UNAM)

    Google Scholar 

  52. Hamilton JD (1994) Time series analysis. Princeton University Press, Princeton, NJ

    Google Scholar 

  53. Anderson A, Semmelroth D (2015) Statistics for big data for dummies. Wiley, Hoboken

    Google Scholar 

  54. Lipsitz LA, Goldberger AL (1992) Loss of complexity and aging: potential applications of fractals and chaos theory to senescence. JAMA 267:1806–1809

    Article  CAS  PubMed  Google Scholar 

  55. Goldberger AL (1992) Non-linear dynamics for clinicians: chaos theory, fractals and complexity at the bedside. Lancet 347:1312–1314

    Article  Google Scholar 

  56. Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov PCh, Peng C-K, Stanley HE (2002) Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci U S A 99(supp.1) 2466–2472

    Google Scholar 

  57. Goldberger AL (2006) Complex systems. Proc Am Thorac Soc 3:467–472

    Article  PubMed  PubMed Central  Google Scholar 

  58. West BJ (2006) Where medicine went wrong: rediscovering the path to complexity. World Scientific, Singapore

    Book  Google Scholar 

  59. West BJ (2010) Homeostasis and Gauss statistics: barriers to understanding natural variability. J Eval Clin Pract 16:403–408

    Article  PubMed  Google Scholar 

  60. West BJ (2013) Fractal physiology and chaos in medicine, 2nd edn. World Scientific, Singapore

    Book  Google Scholar 

  61. Scheffer M (2001) Catastrophic shifts in ecosystems. Nature 413:591–596

    Article  CAS  PubMed  Google Scholar 

  62. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V et al (2009) Early-warning signals for critical transitions. Nature 461:53–59

    Article  CAS  PubMed  Google Scholar 

  63. Carpenter SR, Cole JJ, Pace ML, Batt R, Brock WA, Cline T et al (2011) Early warnings of regime shifts: a whole-ecosystem experiment. Science 332:1079–1082

    Article  CAS  PubMed  Google Scholar 

  64. Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, Dakos V et al (2012) Anticipating critical transitions. Science 338:344–348

    Article  CAS  PubMed  Google Scholar 

  65. Scheffer M (2009) Critical transitions in nature and society. Princeton University Press, Princeton, NJ

    Google Scholar 

  66. Ashby WR (1960) Design for a brain: the origin of adaptive behaviour, 2nd edn. Chapman & Hall, London

    Book  Google Scholar 

  67. Billman GE (2013) Homeostasis: the dynamic self-regulatory process that maintains health and buffers against disease. In: Sturmberg JP, Martin CM (eds) Handbook of systems and complexity in health, Chap. 10. Springer, New York, pp 159–170

    Google Scholar 

  68. Schelling TC (1978) Thermostats, lemons and other families of models. In: Micromotives and macrobehavior, Chap. 3. W. W. Norton & Company, London

    Google Scholar 

  69. Kitts JA (2005) Replication of Schelling’s (1978) thermostat model in MatLab and R, webpage on modelling of social dynamics, University of Massachusetts, retrieved from http://socdynamics.org/id4.html on 21 May 2017

  70. Rivera AL, Estañol B, Sentíes-Madrid H, Fossion R, Toledo-Roy JC, Mendoza-Temis J et al (2016) Heart rate and systolic blood pressure variability in the time domain in patients with recent and long-standing diabetes mellitus. PLoS One 11(2):e0148378. https://doi.org/10.1371/journal.pone.0148378

    Article  PubMed  PubMed Central  Google Scholar 

  71. Rivera AL, Estañol B, Fossion R, Toledo-Roy JC, Callejas-Rojas JA, Gien-López JA et al (2016) Loss of breathing modulation of heart rate variability in patients with recent and long standing diabetes mellitus type II. PLoS One 11(11):e0165904

    Article  PubMed  PubMed Central  Google Scholar 

  72. Schaffer F, McCraty R, Zerr CL (2014) A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front Physiol 5:article number 1040

    Google Scholar 

  73. Dawson TJ (1973) Primitive mammals. In: Whittow GC (ed) Comparative physiology of thermoregulation. Special aspects of thermoregulation. Chap. 1, vol III. Academic Press, New York, pp 1–46

    Google Scholar 

  74. Gisolfi CV, Mora F (2000) The hot brain. MIT Press, Cambridge

    Google Scholar 

  75. Romanovsky AA, Almeida MC, Garami A, Steiner AA, Norman MH, Morrison SF et al (2009) The transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not. Pharmacol Rev 61:228–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schillaci G, Pucci G, Parati G (2011) Blood pressure variability: an additional target for antihypertensive treatment? Hypertension 58:133–135

    Article  CAS  PubMed  Google Scholar 

  77. Heikens MJ, Gorbach AM, Eden HS, Savastano DM, Chen KY, Skarulis MC et al (2011) Core body temperature in obesity. Am J Clin Nutr 93:963–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hynd PI, Czerwinski VH, McWhorter TJ (2014) Is propensity to obesity associated with the diurnal pattern of core body temperature? Int J Obes 38:231–235

    Article  CAS  Google Scholar 

  79. Grimaldi D, Provini F, Pierangeli G, Mazzella N, Zamboni G, Marchesini G et al (2015) Evidence of a diurnal thermogenic handicap in obesity. Chronobiol Int 32:299–302

    Article  PubMed  Google Scholar 

  80. Seeley T (2002) When is self-organization used in biological systems? Biol Bull 202(3):314–318

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Dirección General de Asuntos del Personal Académico (DGAPA) of the Universidad Nacional Autónoma de México (UNAM) grants IN106215, IV100116 and IA105017, from the Consejo Nacional de Ciencia y Tecnología (CONACYT) grants Fronteras 2015-2-1093, Fronteras 2016-01-2277 and CB-2011-01-167441, and the Newton Advanced Fellowship awarded to R.F. by the Academy of Medical Sciences through the UK Government’s Newton Fund programme. We are grateful to Alejandro Frank and Christopher Stephens for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Fossion .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fossion, R. et al. (2018). Homeostasis from a Time-Series Perspective: An Intuitive Interpretation of the Variability of Physiological Variables. In: Olivares-Quiroz, L., Resendis-Antonio, O. (eds) Quantitative Models for Microscopic to Macroscopic Biological Macromolecules and Tissues. Springer, Cham. https://doi.org/10.1007/978-3-319-73975-5_5

Download citation

Publish with us

Policies and ethics