Skip to main content

Modeling Mobility and Dynamics of Scheduled Space-Time Activities—An RDF Approach

  • Chapter
  • First Online:
Human Dynamics Research in Smart and Connected Communities

Part of the book series: Human Dynamics in Smart Cities ((HDSC))

Abstract

In this chapter, we present a semantic data modeling framework for representing and analyzing the movement dynamics of individuals that arise from following a schedule or plan of activities in a semantic-enriched environment, i.e., an environment for which an ontology-driven space-time activity knowledgebase has been constructed. The ontology-driven knowledgebase contains spatial, temporal, and semantic information about geospatial entities in the environment. The relations between geospatial entities in the environment are captured in the knowledgebase through the underlying ontology support. Movement by individuals on a university campus according to a semester-based course schedule is employed as a use case to demonstrate this framework. This work demonstrates an RDF-based semantic data model that is used for reasoning about movement, including the movement trajectories of students on campus based on weekly course schedules. Road network information is incorporated to generate movement trajectories more realistically and data from a campus course information system allows us to query and analyze aggregated movement dynamics on campus. This chapter discusses the advantages of a semantic data modeling approach over traditional data models for human activity and movement including the capability to incorporate different data sources into the analysis, and generate geographic visualizations of movement paths as well as the overall movement dynamics for a campus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.w3.org/RDF/.

  2. 2.

    https://www.w3.org/OWL/.

  3. 3.

    http://xmlns.com/foaf/spec/.

  4. 4.

    https://github.com/protegeproject/swrlapi.

  5. 5.

    https://github.com/locationtech/spatial4j.

  6. 6.

    https://github.com/metteo/jts.

References

  • Abukhater, A., & Walker, D. (2010, July). Making smart growth smarter with GeoDesign. Directions Magazine.

    Google Scholar 

  • Afyouni, I., Ilarri, S., Ray, C., & Claramunt, C. (2013). Context-aware modelling of continuous location-dependent queries in indoor environments. Journal of Ambient Intelligence and Smart Environments, 5(1), 65–88.

    Google Scholar 

  • Allen, J. F. (1984). Towards a general theory of action and time. Artificial Intelligence, 23(2), 123–154.

    Article  Google Scholar 

  • Andrienko, G., Andrienko, N., Bak, P., Keim, D., Kisilevich, S., & Wrobel, S. (2011). A conceptual framework and taxonomy of techniques for analyzing movement. Journal of Visual Languages & Computing, 22(3), 213–232.

    Article  Google Scholar 

  • Andrienko, G., Andrienko, N., Hurter, C., Rinzivillo, S., & Wrobel, S. (2013a). Scalable analysis of movement data for extracting and exploring significant places. IEEE Transactions on Visualization and Computer Graphics, 19(7), 1078–1094.

    Article  Google Scholar 

  • Andrienko, N., Andrienko, G., & Fuchs, G. (2013b). Towards privacy-preserving semantic mobility analysis. In In EuroVis workshop on visual analytics. The Eurographics Association (pp. 19–23).

    Google Scholar 

  • Calderoni, L., Maio, D., & Rovis, S. (2014). Deploying a network of smart cameras for traffic monitoring on a ‘city kernel’. Expert Systems with Applications, 41(2), 502–507.

    Article  Google Scholar 

  • Chen, J., Shaw, S.-L., Yu, H., Lu, F., Chai, Y., & Jia, Q. (2011). Exploratory data analysis of activity diary data: A space-time GIS approach. Journal of Transport Geography, 19(3), 394–404.

    Article  Google Scholar 

  • Crease, P., & Reichenbacher, T. (2013). Linking time geography and activity theory to support the activities of mobile information seekers. Transactions in GIS, 17(4), 507–525.

    Article  Google Scholar 

  • Crooks, A., Croitoru, A., Stefanidis, A., & Radzikowski, J. (2013). #Earthquake: Twitter as a distributed sensor system. Transactions in GIS, 17(1), 124–147.

    Article  Google Scholar 

  • Egenhofer, M. J. M. (2002). Toward the semantic geospatial web. In Proceedings of the tenth ACM international symposium on Advances in geographic information systems—GIS’02 (pp. 1–4). New York, New York, USA: ACM Press.

    Google Scholar 

  • Galache, J. A., Sotres, P., Santana, J. R., Gutierrez, V., Sanchez, L., & Munoz, L. (2013). A living smart city: Dynamically changing nodes behavior through over the air programming. In Proceedings—27th International Conference on Advanced Information Networking and Applications Workshops, WAINA 2013 (pp. 1271–1276).

    Google Scholar 

  • Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F., Renso, C., Rinzivillo, S., et al. (2011). Unveiling the complexity of human mobility by querying and mining massive trajectory data. The VLDB Journal, 20(5), 695–719.

    Article  Google Scholar 

  • Goodchild, M. F. (2007, November). Citizens as sensors: The world of volunteered geography. GeoJournal, 69, 211–221.

    Google Scholar 

  • Grenon, P., & Smith, B. (2004). SNAP and SPAN: Towards dynamic spatial ontology. Spatial cognition and computation, 1 (March), 69–103.

    Google Scholar 

  • Hägerstrand, T. (1970). What about people in regional science? Papers of the Regional Science Association, 24(1), 6–21.

    Article  Google Scholar 

  • Janowicz, K., Scheider, S., Pehle, T., & Hart, G. (2012). Geospatial semantics and linked spatiotemporal data—Past, present, and future. Semantic Web, 3(4), 321–332.

    Google Scholar 

  • Kuhn, W. (2005). Geospatial semantics: Why, of what, and how? In S. Spaccapietra & E. Zimányi (Eds) Journal on Data Semantics III. Lecture Notes in Computer Science (Vol. 3534). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Kuhn, W. (2012). Core concepts of spatial information for transdisciplinary research. International Journal of Geographical Information Science, 26(12), 2267–2276.

    Article  Google Scholar 

  • Kwan, M.-P., Janelle, D. G., & Goodchild, M. F. (2003). Accessibility in space and time: A theme in spatially integrated social science. Journal of Geographical Systems, 5(1), 1–3.

    Article  Google Scholar 

  • Majid, A., Chen, L., Chen, G., Mirza, H. T., Hussain, I., & Woodward, J. (2013). A context-aware personalized travel recommendation system based on geotagged social media data mining. International Journal of Geographical Information Science, 27(4), 662–684.

    Article  Google Scholar 

  • Miller, H. J. (1991). Modelling accessibility using space-time prism concepts within geographical information systems. International Journal of Geographical Information Systems, 5(3), 287–301.

    Article  Google Scholar 

  • Miller, H. J. (1999). Measuring space-time accessibility benefits within transportation networks: Basic theory and computational procedures. Geographical Analysis, 31(2), 187–212.

    Article  Google Scholar 

  • Miller, H. J. (2005). A measurement theory for time geography. Geographical Analysis, 37(1), 17–45.

    Article  Google Scholar 

  • Miller, H. J. (2007). Place-based versus people-based geographic information science. Geography Compass, 1, 503–535.

    Article  Google Scholar 

  • Miller, H. J. (2014). Activity-based analysis. In M. M. Fischer, & P. Nijkamp (Eds.), Handbook of Regional Science (pp. 741–758). Berlin, Heidelberg: Springer Berlin Heidelberg.

    Google Scholar 

  • Miller, H. J., & Goodchild, M. F. (2014). Data-driven geography. GeoJournal.

    Google Scholar 

  • Neutens, T., Van de Weghe, N., Witlox, F., & De Maeyer, P. (2008). A three-dimensional network-based space-time prism. Journal of Geographical Systems, 10(1), 89–107.

    Article  Google Scholar 

  • Perry, M., Sheth, A. A. P., Hakimpour, F., & Jain, P. (2007). Supporting complex thematic, spatial and temporal queries over semantic web data. GeoSpatial Semantics, 228–246.

    Google Scholar 

  • Perry M. S. (2008). A framework to support spatial, temporal and thematic analytics over semantic web data. Wright State University.

    Google Scholar 

  • Roche, S. (2014). Geographic information science I: Why does a smart city need to be spatially enabled? Progress in Human Geography, 38(5), 703–711.

    Article  Google Scholar 

  • Sengupta, S., Ganeshan, K. V. V., & Sarda, N. L. (2010). Developing IITB smart campusGIS grid. In Proceedings of the 1st Amrita ACM-W Celebration on Women in Computing in India—A2CWiC’10 (pp. 1–8). New York, New York, USA: ACM Press.

    Google Scholar 

  • Shaw, S.-L., & Yu, H. (2009). A GIS-based time-geographic approach of studying individual activities and interactions in a hybrid physical–virtual space. Journal of Transport Geography, 17(2), 141–149.

    Article  Google Scholar 

  • Smith, B., & Grenon, P. (2004). The cornucopia of formal-ontological relations. Dialectica, 58(4), 279–296.

    Google Scholar 

  • Sowa, J. F. (1999). Knowledge representation: Logical, philosophical and computational foundations. Brooks/Cole Publishing Co.

    Google Scholar 

  • Stewart, K., Fan, J., & White, E. (2013). Thinking about space-time connections: Spatiotemporal scheduling of individual activities. Transactions in GIS, 791–807.

    Google Scholar 

  • Wang, M., & Ng, J. W. P. (2012). Intelligent mobile cloud education: Smart anytime-anywhere learning for the next generation campus environment. In 2012 Eighth International Conference on Intelligent Environments (pp. 149–156). IEEE.

    Google Scholar 

  • Yin, L., & Shaw, S.-L. (2015, September). Exploring space-time paths in physical and social closeness spaces: a space-time GIS approach. International Journal of Geographical Information Science, 1–20.

    Google Scholar 

  • Yu, H. (2006). Spatio-temporal GIS design for exploring interactions of human activities. Cartography and Geographic Information Science, 33(1), 3–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junchuan Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fan, J., Stewart, K. (2018). Modeling Mobility and Dynamics of Scheduled Space-Time Activities—An RDF Approach. In: Shaw, SL., Sui, D. (eds) Human Dynamics Research in Smart and Connected Communities. Human Dynamics in Smart Cities. Springer, Cham. https://doi.org/10.1007/978-3-319-73247-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73247-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73246-6

  • Online ISBN: 978-3-319-73247-3

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics