Skip to main content

Gastrointestinal Tract: Fat Metabolism in the Colon

  • Living reference work entry
  • First Online:
Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Lipids in colonic digesta are derived from the undigested residue of dietary fat and partly from endogenous secretions and shedding of colonocytes. Generally, only a small proportion of dietary fat consumed by man reaches the large intestine. Studies in mice have shown that high-fat diets alter the composition and function of the gastrointestinal (GI) microbiota, though nonequivalent control diets confound these findings. While a western-style diet, high in fats and refined carbohydrates, is associated with obesity and detrimental health effects, the explicit effects of high-fat diets on the human gut microbiota are poorly understood. Some clinical conditions result in increased fluxes of lipids to the large intestine, and, increasingly, slimming drugs that inhibit pancreatic lipases or adsorbents, including fatty acid-adsorbing Lactobacillus spp., that enable fat to bypass the small intestine also result in large quantities of dietary lipids reaching the colon. GI bacterial lipases and phospholipases release fatty acids and various glycerides that may then be metabolized further to form products that have implications for GI health. The bacterial species responsible for lipase activity in the human colon are poorly characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bibbò S, Ianiro G, Giorgio V, Scaldaferri F, Masucci L, Gasbarrini A, Cammarota G (2016) The role of diet on gut microbiota composition. Eur Rev Med Pharmacol Sci 20:4742–4749

    PubMed  Google Scholar 

  • Bracco U (1994) Effect of triglyceride structure on fat absorption. Am J Clin Nutr 60(suppl):1002S–1009S

    Article  CAS  Google Scholar 

  • Chanoine JP, Hampl S, Jensen C, Boldrin M, Hauptman J (2005) Effect of orlistat on weight and body composition in obese adolescents - a randomized controlled trial. J Am Med Assoc 293:2873–2883

    Article  CAS  Google Scholar 

  • Chen H-L, Haack VS, Janecky CW, Vollendorf NW, Marlett JA (1998) Mechanisms by which wheat bran and oat bran increase stool weight in humans. Am J Clin Nutr 68:711–719

    Article  CAS  Google Scholar 

  • Czerkawski JW (1976) Chemical composition of microbial matter in the rumen. J Sci Food Agric 27:621–632

    Article  CAS  Google Scholar 

  • Chung HJ, Yu JG, Lee IA, Liu MJ, Shen YF, Sharma SP, Jamal MA, Yoo JH, Kim HJ, Hong ST (2016) Intestinal removal of free fatty acids from hosts by lactobacilli for the treatment of obesity. FEBS Open Bio 6:64–76

    Article  CAS  Google Scholar 

  • Dalby MJ, Ross AW, Walker AW, Morgan PJ (2017) Dietary uncoupling of gut microbiota and energy harvesting from obesity and glucose tolerance in mice. Cell Rep 21:1521–1533

    Article  CAS  Google Scholar 

  • Drissi F, Raoult D, Merhej V (2017) Metabolic role of lactobacilli in weight modification in humans and animals. Microb Pathog 106:182–194

    Article  Google Scholar 

  • Friedman E, Isaksson P, Rafter J, Marian B, Winawer S, Newmark H (1989) Fecal diglycerides as selective endogenous mitogens for premalignant and malignant human colonic epithelial cells. Cancer Res 49:544–548

    CAS  PubMed  Google Scholar 

  • Hashim SA, Babayan VK (1978) Studies in man of partially absorbed dietary fats. Am J Clin Nutr 31(suppl):S273–S276

    Article  CAS  Google Scholar 

  • Henderson C (1971) A study of the lipase of Anaerovibrio lipolytica: a rumen bacterium. J Gen Microbiol 65:81–89

    Article  CAS  Google Scholar 

  • Holdeman LV, Cato EP, Moore WEC (1977) Anaerobe laboratory manual, 4th edn. Virginia Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  • Hoyles L (2009) In vitro examination of the effect of Orlistat on the ability of the faecal microbiota to utilize dietary lipids. PhD thesis, University of Reading, UK

    Google Scholar 

  • Juste C (2005) Dietary fatty acids, intestinal microbiota and cancer. Bull Cancer 92:708–721

    CAS  PubMed  Google Scholar 

  • Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070–11075

    Article  CAS  Google Scholar 

  • Li H, Zhu Y, Zhao F, Song S, Li Y, Xu X, Zhou G, Li C (2017) Fish oil, lard and soybean oil differentially shape gut microbiota of middle-aged rats. Sci Rep 7:826

    Article  Google Scholar 

  • Lourenço M, Ramos-Morales E, Wallace RJ (2010) The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal 4:1008–1023

    Article  Google Scholar 

  • Mackie RI, White BA, Bryant MP (1991) Lipid metabolism in anaerobic ecosystems. Crit Rev Microbiol 17:449–479

    Article  CAS  Google Scholar 

  • Matsunaga H, Hokari R, Kurihara C, Okada Y, Takebayashi K, Okudaira K, Watanabe C, Komoto S, Nakamura M, Tsuzuki Y, Kawaguchi A, Nagao S, Miura S (2009) Omega-3 polyunsaturated fatty acids ameliorate the severity of ileitis in the senescence accelerated mice (SAM)P1/Yit mice model. Clin Exp Immunol 158:325–333

    Article  CAS  Google Scholar 

  • Martinez-Guryn K, Hubert N, Frazier K, Urlass S, Musch MW, Ojeda P, Pierre JF, Miyoshi J, Sontag TJ, Cham CM, Reardon CA, Leone V, Chang EB (2018) Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe 23:458–469

    Article  CAS  Google Scholar 

  • Morales P, Fujio S, Navarrete P, Ugalde JA, Magne F, Carrasco-Pozo C, Tralma K, Quezada M, Hurtado C, Covarrubias N, Brignardello J, Henriquez D, Gotteland M (2016) Impact of dietary lipids on colonic function and microbiota: an experimental approach involving Orlistat-induced fat malabsorption in human volunteers. Clin Transl Gastroenterol 7:e161

    Article  CAS  Google Scholar 

  • Morotomi M, Guillem JG, LoGerfo P, Weinstein B (1990) Production of diacylglycerol, an activator of protein kinase C, by human intestinal microflora. Cancer Res 50:3595–3599

    CAS  PubMed  Google Scholar 

  • Mu H, Posgaard T (2005) The metabolism of structured triacylglycerols. Prog Lipid Res 44:430–448

    Article  CAS  Google Scholar 

  • Neidhardt FC (1996) In: Neidhardt FC, Curtiss R, Ingraham JL, ECC L, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: Cellular and Molecular Biology, vol 1, 2nd edn. ASM Press, Washington DC, p 14

    Google Scholar 

  • Newmark HL, Wargovich MJ, Bruce WR (1984) Colon cancer and dietary fat, phosphate, and calcium – a hypothesis. J Nat Cancer Inst 72:1323–1325

    CAS  PubMed  Google Scholar 

  • Newmark H, Lupton JR (1990) Determinants and consequences of colonic luminal pH: implications for colon cancer. Nutr Cancer 14:161–173

    Article  CAS  Google Scholar 

  • O'Shea EF, Cotter PD, Stanton C, Ross RP, Hill C (2012) Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. Int J Food Microbiol 152:189–205

    Article  CAS  Google Scholar 

  • Ogawa A, Kadooka Y, Kato K, Shirouchi B, Sato M (2014) Lactobacillus gasseri SBT2055 reduces postprandial and fasting serum non-esterified fatty acid levels in Japanese hypertriacylglycerolemic subjects. Lipids Health Dis 13:36

    Article  Google Scholar 

  • Phan CT, Tso P (2001) Intestinal lipid absorption and transport. Front Biosci 6:D299–D319

    Article  CAS  Google Scholar 

  • Pittler MH, Ernst E (2005) Complementary therapies for reducing body weight: a systematic review. Int J Obes 29:1030–1038

    Article  CAS  Google Scholar 

  • Prins RA, Lankhorst A, Van der Meer P, Van Nevel CJ (1975) Some characteristics of Anaerovibrio lipolytica, a rumen lipolytic organism. Antonie Van Leeuwenhoek 41:1–11

    Article  CAS  Google Scholar 

  • Rössner S, Sjostrom L, Noack R, Meinders AE, Noseda G (2000) Weight loss, weight maintenance, and improved cardiovascular risk factors after 2 years treatment with orlistat for obesity. Obes Res 8:49–61

    Article  Google Scholar 

  • Sze MA, Schloss PD (2017) Looking for a signal in the noise: revisiting obesity and the microbiome. MBio. https://doi.org/10.1128/mBio.01018-16

  • Thomson ABR, De Pover A, Keelan M, Jarocka-Cyrta E, Clandinin MT (1997) Inhibition of lipid absorption as an approach to the treatment of obesity. Methods Enzymol 286:3–44

    Article  CAS  Google Scholar 

  • Thorasin T, Hoyles L, McCartney AL (2015) Dynamics and diversity of the ‘Atopobium cluster’ in the human faecal microbiota, and phenotypic characterization of ‘Atopobium cluster’ isolates. Microbiology 161:565–579

    Article  CAS  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457:480–487

    Article  CAS  Google Scholar 

  • Vulevic J, McCartney AL, Gee JM, Johnson IT, Gibson GR (2004) Microbial species involved in production of 1,2-sn-diacylglycerol and effects of phosphatidylcholine on human fecal microbiota. Appl Environ Microbiol 70:5659–5666

    Article  CAS  Google Scholar 

  • Wiggins HS, Howell KE, Kellock TD, Stalder J (1969) The origin of faecal fat. Gut 10:400–403

    Article  CAS  Google Scholar 

  • Zhi JU, Moore R, Kanitra L (2003) The effect of short-term (21-day) orlistat treatment on the physiologic balance of six selected macrominerals and microminerals in obese adolescents. J Am Coll Nutr 22:357–362

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. John Wallace .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hoyles, L., Wallace, R.J. (2019). Gastrointestinal Tract: Fat Metabolism in the Colon. In: Goldfine, H. (eds) Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-72473-7_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72473-7_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72473-7

  • Online ISBN: 978-3-319-72473-7

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics