Skip to main content

Dynamic Risk Analyses and Dependency-Aware Root Cause Model for Critical Infrastructures

  • Conference paper
  • First Online:
Critical Information Infrastructures Security (CRITIS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10242))

Abstract

Critical Infrastructures are known for their complexity and the strong interdependencies between the various components. As a result, cascading effects can have devastating consequences, while foreseeing the overall impact of a particular incident is not straight-forward at all and goes beyond performing a simple risk analysis. This work presents a graph-based approach for conducting dynamic risk analyses, which are programmatically generated from a threat model and an inventory of assets. In contrast to traditional risk analyses, they can be kept automatically up-to-date and show the risk currently faced by a system in real-time. The concepts are applied to and validated in the context of the smart grid infrastructure currently being deployed in Luxembourg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    From a probability theoretic point of view, \(\mathcal {L}\) is an expected value (a frequency, in fact) and not a probability. Formally, \(\mathcal {L}(\alpha )=\sum _r \mathbb {E}\big [\mathcal {L}(r) \cdot \mathbbm {1}[{r \;\text {causes}\; \alpha }]\big ]\), where \(\mathcal {L}(r)\) is a non-probabilistic constant, for the probability space only includes edges, not nodes.

  2. 2.

    GraphViz is an open-source graph visualization software. For more information on the dot language, see http://graphviz.org/content/dot-language.

  3. 3.

    https://www.itrust.lu/products/.

References

  1. Rinaldi, S.M.: Modeling and simulating critical infrastructures and their interdependencies. In: Proceedings of the 37th Annual Hawaii International Conference on System Sciences, p. 8. IEEE (2004)

    Google Scholar 

  2. International Organization for Standardization: ISO/IEC 27019 (2013)

    Google Scholar 

  3. Bundesamt für Sicherheit in der Informationstechnik (BSI): IT-Grundschutz (2005)

    Google Scholar 

  4. Aubigny, M., Harpes, C., Castrucci, M.: Risk ontology and service quality descriptor shared among interdependent critical infrastructures. In: Xenakis, C., Wolthusen, S. (eds.) CRITIS 2010. LNCS, vol. 6712, pp. 157–160. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21694-7_14

    Chapter  Google Scholar 

  5. Foglietta, C., Panzieri, S., Macone, D., Liberati, F., Simeoni, A.: Detection and impact of cyber attacks in a critical infrastructures scenario: the CockpitCI approach. Int. J. Syst. Syst. Eng. 4(3–4), 211–221 (2013)

    Article  Google Scholar 

  6. Suh, B., Han, I.: The IS risk analysis based on a business model. Inf. Manag. 41(2), 149–158 (2003)

    Article  Google Scholar 

  7. Tong, X., Ban, X.: A hierarchical information system risk evaluation method based on asset dependence chain. Int. J. Secur. Appl. 8(6), 81–88 (2014)

    Google Scholar 

  8. Breier, J.: Asset valuation method for dependent entities. J. Internet Serv. Inf. Secur. (JISIS) 4(3), 72–81 (2014)

    Google Scholar 

  9. Stergiopoulos, G., Kotzanikolaou, P., Theocharidou, M., Lykou, G., Gritzalis, D.: Time-based critical infrastructure dependency analysis for large-scale and cross-sectoral failures. Int. J. Crit. Infrastruct. Prot. 12, 46–60 (2016)

    Article  Google Scholar 

  10. Baiardi, F., Sgandurra, D.: Assessing ICT risk through a Monte Carlo method. Environ. Syst. Decis. 33(4), 486–499 (2013)

    Article  Google Scholar 

  11. Wang, L., Islam, T., Long, T., Singhal, A., Jajodia, S.: An attack graph-based probabilistic security metric. In: Atluri, V. (ed.) DBSec 2008. LNCS, vol. 5094, pp. 283–296. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70567-3_22

    Chapter  Google Scholar 

  12. Homer, J., Ou, X., Schmidt, D.: A sound and practical approach to quantifying security risk in enterprise networks. Kansas State University Techn. Report (2009)

    Google Scholar 

  13. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  14. Muller, S., Harpes, C., Le Traon, Y., Gombault, S., Bonnin, J.-M.: Efficiently computing the likelihoods of cyclically interdependent risk scenarios. Comput. Secur. 64, 59–68 (2017)

    Article  Google Scholar 

  15. Klein, R.: Information modelling and simulation in large dependent critical infrastructures – an overview on the european integrated project IRRIIS. In: Setola, R., Geretshuber, S. (eds.) CRITIS 2008. LNCS, vol. 5508, pp. 131–143. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03552-4_12

    Chapter  Google Scholar 

  16. Grochocki, D., Huh, J.H., Berthier, R., Bobba, R., Sanders, W.H., Cárdenas, A.A., Jetcheva, J.G.: AMI threats, intrusion detection requirements and deployment recommendations. In: 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm), pp. 395–400. IEEE (2012)

    Google Scholar 

  17. ENISA: Communication network interdependencies in smart grids (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Fonds National de la Recherche, Luxembourg (project reference 10239425) and was carried out in the framework of the H2020 project ‘ATENA’ (reference 700581), partially funded by the EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Muller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muller, S., Harpes, C., Le Traon, Y., Gombault, S., Bonnin, JM., Hoffmann, P. (2017). Dynamic Risk Analyses and Dependency-Aware Root Cause Model for Critical Infrastructures. In: Havarneanu, G., Setola, R., Nassopoulos, H., Wolthusen, S. (eds) Critical Information Infrastructures Security. CRITIS 2016. Lecture Notes in Computer Science(), vol 10242. Springer, Cham. https://doi.org/10.1007/978-3-319-71368-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71368-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71367-0

  • Online ISBN: 978-3-319-71368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics