Skip to main content

An Effective Martin Kernel for Time Series Classification

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10634))

Included in the following conference series:

Abstract

Time series classification has attracted a lot of attention in recent years. However, the original data often corrupted with noise. To alleviate this problem, many approaches try to perform nonlinear transformation, such that the resulting space could give out the most relevant features. Since the resulting space is not a Euclidean space, strong assumptions are needed for many kernel-based methods for the purpose of obtaining a reasonable measurement. In this paper we propose a novel approach based on Martin distance. The Martin distance is applied to measure the pairwise distance in the resulting space, without imposing strong assumptions on model states. Experiments on several benchmark datasets demonstrate the advantages of the proposed kernel on its effectiveness and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Möller-Levet, C.S., Klawonn, F., Cho, K.H., Wolkenhauer, O.: Fuzzy clustering of short time-series and unevenly distributed sampling points. In: Berthold, M.R., Lenz, H.J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS, vol. 2810, pp. 330–340. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45231-7_31

    Chapter  Google Scholar 

  2. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)

    MATH  Google Scholar 

  3. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: KDD Workshop, Seattle, WA, vol. 10, pp. 359–370 (1994)

    Google Scholar 

  4. Keogh, E.J., Pazzani, M.J.: Derivative dynamic time warping. In: Proceedings of the 2001 SIAM International Conference on Data Mining, pp. 1–11 (2001)

    Google Scholar 

  5. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. In: 18th International Conference on Data Engineering, pp. 673–684. IEEE (2002)

    Google Scholar 

  6. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp. 491–502. ACM (2005)

    Google Scholar 

  7. Chen, L., Ng, R.: On the marriage of lp-norms and edit distance. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases, pp. 792–803 (2004)

    Google Scholar 

  8. Moreno, P.J., Ho, P.P., Vasconcelos, N.: A Kullback-Leibler divergence based kernel for SVM classification in multimedia applications. In: Neural Information Processing Systems, pp. 1385–1392 (2004)

    Google Scholar 

  9. Cuturi, M., Doucet, A.: Autoregressive kernels for time series. arXiv preprint arXiv:1101.0673 (2011)

  10. Jebara, T., Kondor, R., Howard, A.: Probability product kernels. J. Mach. Learn. Res. 5, 819–844 (2004)

    MATH  MathSciNet  Google Scholar 

  11. Jaakkola, T.S., Diekhans, M., Haussler, D.: Using the fisher kernel method to detect remote protein homologies. In: ISMB-99 Proceedings, vol. 99, pp. 149–158 (2000)

    Google Scholar 

  12. Chen, H., Tang, F., Tino, P., Yao, X.: Model-based kernel for efficient time series analysis. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 392–400. ACM (2013)

    Google Scholar 

  13. Jaeger, H.: The echo state approach to analysing and training recurrent neural networks-with an erratum note. German National Research Center for Information Technology GMD Technical Report, vol. 148(34), p. 13 (2001)

    Google Scholar 

  14. Martin, R.J.: A metric for arma processes. IEEE Trans. Signal Process. 48(4), 1164–1170 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3), 127–149 (2009)

    Article  MATH  Google Scholar 

  16. Jaeger, H.: Echo state network. Scholarpedia 2(9), 2330 (2007)

    Article  Google Scholar 

  17. Willems, J.C.: From time series to linear system-part I. Finite dimensional linear time invariant systems. Automatica 22(5), 561–580 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. De Cock, K., De Moor, B.: Subspace angles between arma models. Syst. Control Lett. 46(4), 265–270 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)

    Article  Google Scholar 

  20. Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A., Batista, G.: The UCR time series classification archive (2015). www.cs.ucr.edu/~eamonn/time_series_data/

Download references

Acknowledgments

This work is supported by the National Key Research and Development Program of China (Grant No. 2016YFB1000905), and the National Natural Science Foundation of China (Grants Nos. 91546116, and 61673363).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanhuan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhang, L., Li, Y., Chen, H. (2017). An Effective Martin Kernel for Time Series Classification. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10634. Springer, Cham. https://doi.org/10.1007/978-3-319-70087-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70087-8_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70086-1

  • Online ISBN: 978-3-319-70087-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics