Skip to main content

About the Domino Problem for Subshifts on Groups

  • Chapter
  • First Online:
Sequences, Groups, and Number Theory

Part of the book series: Trends in Mathematics ((TM))

Abstract

From a classical point of view, the domino problem is the question of the existence of an algorithm which can decide whether a finite set of square tiles with colored edges can tile the plane, subject to the restriction that adjacent tiles share the same color along their adjacent edges. This question has already been settled in the negative by Berger in 1966; however, these tilings can be reinterpreted in dynamical terms using the formalism of subshifts of finite type, and hence the same question can be formulated for arbitrary finitely generated groups. In this chapter we present the state of the art concerning the domino problem in this extended framework. We also discuss different notions of effectiveness in subshifts defined over groups, that is, the ways in which these dynamical objects can be described through Turing machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aubrun, N., Barbieri, S., Sablik, M.: A notion of effectiveness for subshifts on finitely generated groups. Theor. Comput. Sci. 661, 35–55 (2017)

    Article  MathSciNet  Google Scholar 

  2. Aubrun, N., Kari, J.: Tiling problems on Baumslag-Solitar groups. In: MCU’13, pp. 35–46 (2013)

    Article  MathSciNet  Google Scholar 

  3. Aubrun, N., Sablik, M.: Multidimensional effective S-adic systems are sofic. Uniform Distribution Theory 9(2), 7–29 (2014)

    Google Scholar 

  4. Ballier, A., Jeandel, E.: Tilings and model theory. First Symposium on Cellular Automata Journées Automates Cellulaires (2008)

    Google Scholar 

  5. Ballier, A., Jeandel, E.: Computing (or not) quasi-periodicity functions of tilings. In: Second Symposium on Cellular Automata “Journées Automates Cellulaires”, JAC 2010, Turku, Finland, December 15–17, 2010. Proceedings, pp. 54–64 (2010)

    Google Scholar 

  6. Barbieri, S., Sablik, M.: A generalization of the simulation theorem for semidirect products. Ergodic Theory Dyn. Syst. (to appear)

    Google Scholar 

  7. Berger, R.: The undecidability of the Domino Problem. Ph.D. thesis, Harvard University (1964)

    Google Scholar 

  8. Berger, R.: The undecidability of the domino problem. Mem. Am. Math. Soc. 66, 72 (1966)

    Google Scholar 

  9. Blondel, V.D., Bournez, O., Koiran, P., Papadimitriou, C., Tsitsiklis, J.N.: Deciding stability and mortality of piecewise affine dynamical systems. Theor. Comput. Sci. 255(1–2), 687–696 (2001). Article dans revue scientifique avec comité de lecture

    Article  MathSciNet  Google Scholar 

  10. Büchi, J.R.: Turing-Machines and the Entscheidungsproblem. Math. Ann. 148(3), 201–213 (1962)

    Google Scholar 

  11. Ceccherini-Silberstein, T., Coornaert, M.: Cellular Automata and Groups. Springer Monographs in Mathematics. Springer, New York (2010) https://books.google.cl/books?id=N-LSFFaHTKwC

    Google Scholar 

  12. Cenzer, D., Dashti, S.A., King, J.L.F.: Computable symbolic dynamics. Math. Log. Q. 54(5), 460–469 (2008)

    Article  MathSciNet  Google Scholar 

  13. Cohen, D.B.: The large scale geometry of strongly aperiodic subshifts of finite type. Adv. Math. 308, 599–626 (2017)

    Article  MathSciNet  Google Scholar 

  14. Delvenne, J.C., Kůrka, P., Blondel, V.D.: Computational Universality in Symbolic Dynamical Systems, pp. 104–115. Springer, Berlin/Heidelberg (2005)

    MATH  Google Scholar 

  15. Diestel, R.: A short proof of Halin’s grid theorem. Abh. Math. Semin. Univ. Hambg. 74, 237–242 (2004)

    Google Scholar 

  16. Durand, B., Romashchenko, A., Shen, A.: Effective Closed Subshifts in 1D Can Be Implemented in 2D, pp. 208–226. Springer, Berlin/Heidelberg (2010)

    Chapter  Google Scholar 

  17. Goodman-Strauss, C.: Matching rules and substitution tilings. Ann. Math. 147(1), 181–223 (1998)

    Article  MathSciNet  Google Scholar 

  18. Goodman-Strauss, C.: A hierarchical strongly aperiodic set of tiles in the hyperbolic plane. Theor. Comput. Sci. 411(7), 1085–1093 (2010)

    Article  MathSciNet  Google Scholar 

  19. Hadamard, J.: Théorème sur les séries entières. Acta Math. 22, 55–63 (1899)

    Article  MathSciNet  Google Scholar 

  20. Hedlund, G., Morse, M.: Symbolic dynamics. Am. J. Math. 60(4), 815–866 (1938)

    Google Scholar 

  21. Hochman, M.: On the dynamics and recursive properties of multidimensional symbolic systems. Invent. Math. 176(1), 131–167 (2009)

    Article  MathSciNet  Google Scholar 

  22. Hooper, P.K.: The undecidability of the Turing machine immortality problem. J. Symb. Log. 31(2), 219–234 (1966)

    Article  MathSciNet  Google Scholar 

  23. Jeandel, E.: Aperiodic subshifts on polycyclic groups (2015). ArXiv:1510.02360

    Google Scholar 

  24. Jeandel, E.: Translation-like actions and aperiodic subshifts on groups (2015). ArXiv:1508.06419

    Google Scholar 

  25. Jeandel, E., Vanier, P.: Characterizations of periods of multi-dimensional shifts. Ergodic Theory Dyn. Syst. 35(2), 431–460 (2015)

    Article  MathSciNet  Google Scholar 

  26. Kahr, A., Moore, E.F., Wang, H.: Entscheidungsproblem reduced to the ∀∃∀ case. Proc. Natl. Acad. Sci. U. S. A. 48(3), 365–377 (1962)

    Google Scholar 

  27. Kari, J.: The tiling problem revisited. In: MCU, pp. 72–79 (2007)

    Google Scholar 

  28. Kari, J.: On the undecidability of the tiling problem. In: Current Trends in Theory and Practice of Computer Science (SOFSEM), pp. 74–82 (2008)

    Google Scholar 

  29. Kari, J., Ollinger, N.: Periodicity and immortality in reversible computing. In: 33rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2008). LNCS, vol. 5162, pp. 419–430 (2008)

    Google Scholar 

  30. Koiran, P., Cosnard, M., Garzon, M.: Computability with low-dimensional dynamical systems. Theor. Comput. Sci. 132(1), 113–128 (1994)

    Article  MathSciNet  Google Scholar 

  31. Kurka, P.: On topological dynamics of Turing machines. Theor. Comput. Sci. 174, 203–216 (1997)

    Article  MathSciNet  Google Scholar 

  32. Kuske, D., Lohrey, M.: Logical aspects of Cayley-graphs: the group case. Ann. Pure Appl. Logic 131(1–3), 263 – 286 (2005)

    Article  MathSciNet  Google Scholar 

  33. Lennox, J.C., Robinson, D.J.: The Theory of Infinite Soluble Groups. Oxford Mathematical Monographs. Oxford Science Publications, Oxford (2004)

    Chapter  Google Scholar 

  34. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  35. Magnus, W., Karrass, A., Solitar, D.: Combinatorial Group Theory, 2nd rev. edn. Dover, Mineola (1976)

    Google Scholar 

  36. Markley, N.G., Paul, M.E.: Matrix subshifts for \(\mathbb {Z}^\nu \) symbolic dynamics. Proc. Lond. Math. Soc. 3(43), 251–272 (1981)

    Google Scholar 

  37. Mozes, S.: Tilings, substitutions systems and dynamical systems generated by them. J. Anal. Math. 53, 139–186 (1989)

    Article  MathSciNet  Google Scholar 

  38. Muchnik, R., Pak, I.: Percolation on Grigorchuk Groups. Commun. Algebra 29(2), 661–671 (2001)

    Article  MathSciNet  Google Scholar 

  39. Muller, D.E., Schupp, P.E.: The theory of ends, pushdown automata, and second-order logic. Theor. Comput. Sci. 37, 51–75 (1985)

    Article  MathSciNet  Google Scholar 

  40. Myers, D.: Non recursive tilings of the plane II. J. Symb. Log. 39(2), 286–294 (1974)

    Article  MathSciNet  Google Scholar 

  41. Nasu, M.: Textile Systems for Endomorphisms and Automorphisms of the Shift. Memoirs of the American Mathematical Society, vol. 114. American Mathematical Society, Providence (1995)

    Article  MathSciNet  Google Scholar 

  42. Odifreddi, P.: Chapter {XIV} enumeration degrees. In: Classical Recursion Theory. Studies in Logic and the Foundations of Mathematics, vol. 143, pp. 827–861. Elsevier, Amsterdam (1999)

    Google Scholar 

  43. Pavlov, R., Schraudner, M.: Classification of sofic projective subdynamics of multidimensional shifts of finite type. Trans. Am. Math. Soc. 367, 3371–3421 (2015)

    Article  MathSciNet  Google Scholar 

  44. Rips, E.: Subgroups of small cancellation groups. Bull. Lond. Math. Soc. 14, 45–47 (1982)

    Article  MathSciNet  Google Scholar 

  45. Robertson, N., Seymour, P.: Graph minors. v. excluding a planar graph. J. Comb. Theory Ser. B 41(1), 92–114 (1986)

    Article  MathSciNet  Google Scholar 

  46. Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Invent. Math. 12, 177–209 (1971)

    Article  MathSciNet  Google Scholar 

  47. Robinson, R.M.: Undecidable tiling problems in the hyperbolic plane. Invent. Math. 44, 159–264 (1978)

    Article  MathSciNet  Google Scholar 

  48. Sablik, M., Fernique, T.: Local rules for computable planar tilings. In: Automata and Journées Automates Cellulaires, Corse, France (2012)

    Google Scholar 

  49. Segal, D.: Polycyclic Groups. Cambridge Tracts in Mathematics, vol. 82. Cambridge University Press, Cambridge (1983)

    Google Scholar 

  50. Selman, A.L.: Arithmetical reducibilities I. Math. Log. Q. 17(1), 335–350 (1971)

    Article  MathSciNet  Google Scholar 

  51. Seward, B.: Burnside’s problem, spanning trees and tilings. Geom. Topol. 18(1), 179–210 (2014)

    Article  MathSciNet  Google Scholar 

  52. Sipser, M.: Introduction to the Theory of Computation. International Thomson Publishing (1996)

    Article  Google Scholar 

  53. Tits, J.: Free subgroups in linear groups. J. Algebra 20(2), 250–270 (1972)

    Article  MathSciNet  Google Scholar 

  54. Törmä, I.: Quantifier extensions of multidimensional sofic shifts. Proc. Am. Math. Soc. 143, 4775–4790 (2015)

    Article  MathSciNet  Google Scholar 

  55. Turing, A.: On computable numbers, with an application to the entscheidungsproblem. Proc. Lond. Math. Soc. 42(2), 230265 (1936)

    MathSciNet  MATH  Google Scholar 

  56. Wang, H.: Proving theorems by pattern recognition, II. Bell Syst. Tech. J. 40(1), 1–41 (1961)

    Article  Google Scholar 

  57. Whyte, K.: Amenability, Bilipschitz equivalence, and the Von Neumann Conjecture. Duke Math. J. 99(1), 93–112 (1999)

    Article  MathSciNet  Google Scholar 

  58. Woess, W.: Graphs and groups with tree-like properties. J. Comb. Theory Ser. B 47(3), 361–371 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Aubrun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aubrun, N., Barbieri, S., Jeandel, E. (2018). About the Domino Problem for Subshifts on Groups. In: Berthé, V., Rigo, M. (eds) Sequences, Groups, and Number Theory. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-69152-7_9

Download citation

Publish with us

Policies and ethics