Skip to main content

Operational Strategies for Enzymatic Hydrolysis in a Biorefinery

  • Chapter
  • First Online:
Biorefining of Biomass to Biofuels

Abstract

The [second generation (2G)] biorefinery is gaining wide attention for the production of biofuels such as bioethanol and coproducts such as xylooligosaccharides using lignocellulosic materials as feedstock. However, enzymatic hydrolysis of pretreated lignocellulosic materials to produce fermentable sugars is a complex-step bioethanol production process. In addition, a bottleneck in lignocellulosic biomass conversion to bioethanol is the cost of these enzymes. Thus, one of the most important objectives and challenges in the production of 2G bioethanol is the development of cost-effective processes at large scale. This chapter gives an overview of enzymatic hydrolysis process, the effect of pretreatment on enzymatic hydrolysis, operational strategies, and reactor design and operation as well as the advances achieved in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2G:

Second generation

LCM:

Lignocellulosic material

SHF:

Separate hydrolysis and fermentation

SSF:

Simultaneous saccharification and fermentation

CBP:

Consolidated bioprocessing

SSSF:

Semi-simultaneous saccharification and fermentation

SSCF:

Simultaneous saccharification and co-fermentation

HMF:

Hydroxymethylfurfural

DP:

Degree of polymerization

AFEXTM :

Ammonia fiber expansion

EGW:

Eucalyptus globulus wood

DM:

Dry matter

WIS:

Water-insoluble solids

FPU:

Filter paper unit

STR:

Stirred-tank reactor

RFA:

Renewable fuel association

IEA:

International Energy Agency

References

  • Aguilar-Reynosa A, Romaní A, Rodríguez-Jasso RM, Aguilar CN, Garrote G, Ruiz HA (2017) Microwave heating processing as alternative of pretreatment in second-generation biorefinery: an overview. Energy Convers Manage 136:50–65

    Article  Google Scholar 

  • Alvira P, Tomás-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  Google Scholar 

  • Al-Zuhair S, Al-Hosany M, Zooba Y, Al-Hammadi A, Al-Kaabi S (2013) Development of a membrane bioreactor for enzymatic hydrolysis of cellulose. Renew Energy 56:85–89

    Article  Google Scholar 

  • Andrić P, Meyer AS, Jensen PA, Dame-Johansen K (2010) Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis. II. Quantification of inhibition and suitability of membrane reactors. Biotechnol Adv 28:407–425

    Article  Google Scholar 

  • Araya F, Troncoso E, Mendoça RT, Freer J (2015) Condensed lignin structures and re-localization achieved at high severities in autohydrolysis of Eucalyptus globulus wood and their relationship with cellulose accessibility. Biotechnol Bioeng 112:1783–1791

    Article  Google Scholar 

  • Baeyens J, Kang Q, Apples L, Dewil R, Lv Y, Tan T (2015) Challenges and opportunities in improving the production of bio-ethanol. Prog Energy Combust Sci 47:60–88

    Article  Google Scholar 

  • Bals BD, Teymouri F, Campbell T, Jin M, Dale BE (2012) Low temperature and long residence time AFEX pretreatment of corn stover. Bioenergy Res 5:372–379

    Article  Google Scholar 

  • Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2009) Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 27:833–848

    Article  Google Scholar 

  • Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sustain Enery Rev 36:91–106

    Article  Google Scholar 

  • Binod O, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101:4767–4774

    Article  Google Scholar 

  • Brummer V, Skryja P, Jurena T, Hlavacek V, Stehlik P (2014) Suitable technological conditions for enzymatic hydrolysis of waste paper by Novozymes® Enzymes NS50013 and NS50010. Appl Biochem Biotechnol 174:1299–1308

    Article  Google Scholar 

  • Cara C, Moya M, Ballesteros I, Negro MJ, González A, Ruiz E (2007) Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass. Process Biochem 42:1003–1009

    Article  Google Scholar 

  • Caspeta L, Caro-Bermúdez MA, Ponce-Noyola T, Martinez A (2014) Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol. Appl Energy 113:277–286

    Article  Google Scholar 

  • Cateto C, Hu G, Ragauskas A (2011) Enzymatic hydrolysis of organosolv Kanlow switchgrass and its impact on cellulose crystallinity and degree of polymerization. Energy Environ Sci 4:1512–1516

    Article  Google Scholar 

  • Chandra R, Bura R, Mabee W, Berlin A, Pan X, Saddler J (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics. In: Olsson L (ed) Biofuels, vol 108. Springer, Berlin, pp 67–93

    Chapter  Google Scholar 

  • Chang VS, Holtzapple MT (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotech 84(86):5–37

    Article  Google Scholar 

  • Chaturvedi V, Verma P (2013) An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3. Biotech 3:415–431

    Google Scholar 

  • Chen H, Qiu W (2010) Key technologies for bioethanol production from lignocellulose. Biotechnol Adv 28:556–562

    Article  Google Scholar 

  • Chen WH, Tsai Ch, Lin Ch, Tsai PY, Hwang WS (2013) Pilot-scale study the acid-catalyzed steam explosion of rice straw using a continuous pretreated system. Bioresour Technol 128:297–304

    Article  Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers Manage 51:1412–1421

    Article  Google Scholar 

  • Conde-Mejía C, Jiménez-Gutiérrez A, El-Halwagi M (2012) A comparison of pretreatment methods for bioethanol production from lignocellulosic materials. Process Saf Environ Prot 3:189–202. 27. 41

    Google Scholar 

  • Dias MOS, Junqueira TL, Cavalett O, Cunha MP, Jesus Ch, Rossell CEV, Filho RM, Bonomi A (2012) Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresource Technol 103:152–161

    Article  Google Scholar 

  • Du J, Li Y, Zhang H, Zheng H, Huang H (2014) Factors to decrease the cellulose conversion of enzymatic hydrolysis of lignocellulose at high solid concentrations. Cellulose 21:2117–2409

    Article  Google Scholar 

  • Dunaway KW, Dasari RK, Bennett NG, Berson RE (2010) Characterization of changes in viscosity and insoluble solids content during enzymatic saccharification of pretreated corn stover slurries. Bioresour Technol 101:3575–3582

    Article  Google Scholar 

  • Dutta S, Wu KCW (2014) Enzymatic breakdown of biomass: enzyme active sites, immobilization, and biofuel production. Green Chem 16:4615–4626

    Article  Google Scholar 

  • European Biofuels Technology Platform (2016) http://biofuelstp.eu/cellulosic-ethanol.html#ce8. Accessed 13 Feb 2016

  • Fang Z (2015) How can we best solubilize lignocellulosic biomass for hydrolysis? Biofuels Bioprod Biorefin 9:621–622

    Google Scholar 

  • Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–76

    Article  Google Scholar 

  • Geddes CC, Nieves IU, Ingram LO (2011) Advances in ethanol production. Curr Opin Biotechnol 22:312–319

    Article  Google Scholar 

  • Geng W, Jin Y, Jammel H, Park S (2015) Strategies to achieve high-solids enzymatic hydrolysis of dilute-acid pretreated corn stover. Bioresour Technol 187:43–48

    Article  Google Scholar 

  • Gonçalves FA, Ruiz HA, Dos-Santos ES, Teixeira JA, de Macedo GR (2014) Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies. Fuel 131:66–76

    Article  Google Scholar 

  • Gonçalves FA, Ruiz HA, Dos-Santos ES, Teixeira JA, de Macedo GR (2015) Bioethanol production from coconuts and cactus pretreated by autohydrolysis. Ind Crop Prod 77:1–12

    Article  Google Scholar 

  • Gonçalves FA, Ruiz HA, dos Santos ES, Teixeira JA, de Macedo GR (2016) Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept. Renew Energy 94:353–365

    Article  Google Scholar 

  • Gong Y, Zhang Ch, Yan Q, He W, Xiao W, Lin J (2015) Enhanced enzymatic hydrolysis of sugarcane bagasse hemicellulose using recombinant glucose oxidase expressed by Pichia pastoris. Ind Crop Prod 77:458–466

    Article  Google Scholar 

  • Grimaldi MP, Marques MP, Laluce C, Cilli EM, Sponchiado SRP (2015) Evaluation of lime and hydrothermal pretreatments for efficient enzymatic hydrolysis of raw sugarcane bagasse. Biotechnol Biofuels 8(205):1–14

    Google Scholar 

  • Gupta R, Kumar S, Gomes J, Kuhad RC (2012) Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol. Biotechnol Biofuels 5:16

    Article  Google Scholar 

  • Harris JF, Baker AJ, Conner AH, Jeffries TW, Minor JL et al (1985) Two-stage, dilute sulfuric acid hydrolysis of wood. An investigation of fundamentals. United States, Department of Agriculture. General Technical Report FPL-45

    Google Scholar 

  • Haven MØ, Lindedam J, Jeppesen MD, Elleskov M, Rodrigues AC, Gama M, Jørgensen H, Felby C (2015) Continuous recycling of enzymes during production of lignocellulosic bioethanol in demonstration scale. Appl Energy 159:188–195

    Article  Google Scholar 

  • Hodge DB, Karim NM, Schell DJ, McMillan JD (2008) Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresour Technol 99:8940–8948

    Article  Google Scholar 

  • Hodge DB, Karim MN, Schell DJ, McMillan JD (2009) Model-based fed-batch for high-solids enzymatic cellulose hydrolysis. Appl Biochem Biotechnol 152:88–107

    Article  Google Scholar 

  • Hu J, Arantes V, Pribowo A, Saddler JN (2013) The synergistic action of accessory enzymes enhances the hydrolytic potential of a “cellulase mixture” but is highly substrate specific. Biotechnol Biofuels 6–112

    Google Scholar 

  • IEA (2015) IEA bioenergy Task 42 on biorefineries: http://www.iea-bioenergy.task42-biorefineries.com. Accessed 19 Dec 2015

  • Ioelovich M, Morag E (2011) Effect of cellulose structure on enzymatic hydrolysis. BioResources 6:2818–2853

    Google Scholar 

  • Ji X, Liu S, Wang Q, Yang G, Chen J, Fang G (2015) Wet oxidation pretreatment of wood pulp waste for enhancing enzymatic saccharification. BioResources 10:2177–2184

    Google Scholar 

  • Joelsson E, Erdei B, Galbe M, Wallberg O (2016) Techno-economic evaluation of integrated first-and-second-generation ethanol production from grain and straw. Biotechnol Biofuels 9:1

    Article  Google Scholar 

  • Karimi K, Taherzadeh MJ (2016) A critical review on analysis in pretreatment of lignocelluloses: degree of polymerization, adsorption/desorption, and accessibility. Bioresour Technol 203:348–356

    Article  Google Scholar 

  • Khullar E, Dien BS, Raush KD, Tumbleson ME, Singh V (2013) Effect of particle size on enzymatic hydrolysis of pretreated Miscanthus. Ind Crops Prod 44:11–17

    Article  Google Scholar 

  • Kim TH, Lee YY, Sunwoo Ch, Kim JS (2006) Pretreatment of corn stover by low-liquid ammonia recycle percolation process. Appl Biochem Biotech 136:41–57

    Article  Google Scholar 

  • Knutsen JS, Liberatore MW (2009) Rheology of high-solids biomass slurries for biorefinery applications. J Rheol 53:877–892

    Article  Google Scholar 

  • Kristensen JB, Thygesen LG, Felby C, Jørgensen H, Elder T (2008) Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol Biofuels 1–5

    Google Scholar 

  • Kristensen JB, Felby C, Jørgensen H (2009) Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol Biofuels 2:11

    Google Scholar 

  • Larsen J, Petersen MØ, Thirup Li HW, Iversen FK (2008) The IBUS process—lignocellulosic bioethanol close to a commercial reality. Chem Eng Technol 5:765–772

    Article  Google Scholar 

  • Lennartsson PR, Erlandsson P, Taherzadeh MJ (2014) integration of the first and second generation bioethanol processes and the importance of by-products. Bioresource Technol 165:3–8

    Article  Google Scholar 

  • Li H, Pu Y, Kumar R, Ragauskas AJ, Wyman CE (2014) Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Biotechnol Bioeng 111:485–492

    Article  Google Scholar 

  • Li Z, Guo A, Feng X, Li Ch (2015) An environment friendly and efficient process for xylitol bioconversion from enzymatic corncob hydrolysate by Candida tropicalis. Chem Eng J 263:249–256

    Article  Google Scholar 

  • Liao W, Wen Z, Hurlery S, Liu Y, Liu C, Chen S (2005) Effects of hemicellulose and lignin on enzymatic hydrolysis of cellulose from dairy manure. Appl Biochem Biotechnol 121–124:1017–1030

    Article  Google Scholar 

  • Liguori R, Ventorino V, Pepe O, Faraco V (2016) Bioreactors for lignocellulose conversion into fermentable sugars for production of high added value products. Appl Microbiol Biotechnol 100:597–611

    Article  Google Scholar 

  • Limayem A, Ricke SR (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467

    Google Scholar 

  • López-Abelairas M, Álvarez-Pallín M, Salvachúa D, Lú-Chau T, Martínez MJ, Lema JM (2013) Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production. Bioprocess Biosyst Eng 36:1251–1260

    Article  Google Scholar 

  • Lu Y, Wang Y, Xu G, Chu J, Zhuang Y, Zhang S (2010) Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass. Appl Biochem Biotechnol 160:360–369

    Article  Google Scholar 

  • Ludwing D, Michael B, Hirth T, Rupp S, Zibek S (2014) High solids enzymatic hydrolysis of pretreated lignocellulosic materials with a powerful stirrer concept. Appl Biochem Biotechnol 172:1699–1713

    Article  Google Scholar 

  • Macrelli S, Mogensen J, Zachi G (2012) Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process. Biotechnol Biofuels 5:22

    Article  Google Scholar 

  • Michelin M, Ruiz HA, Silva DP, Ruzene DS, Teixeira JA, Polizeli MD (2015) Cellulose from lignocellulosic waste. In: Ramawat KG, Mérillon JM (eds) Polysaccharides: bioactivity and biotechnology, Springer International Publishing Switzerland, pp 475–511

    Google Scholar 

  • Modenbach AA, Nokes SE (2013) Enzymatic hydrolysis of biomass at high-solids loadings—a review. Biomass Bioenergy 56:526–544

    Article  Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14:578–597

    Article  Google Scholar 

  • Nieves DC, Ruiz HA, Zumalacárregui de Cárdenas L, Alvarez GM, Aguilar CN, Ilyina A, Martínez-Hernández JL (2016) Enzymatic hydrolysis of chemically pretreated mango stem bark residues at high solid loading. Ind Crops Prod 83:500–508

    Article  Google Scholar 

  • Öhgren K, Bura R, Saddler J, Zacchi G (2007) Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour Technol 98:2503–2510

    Article  Google Scholar 

  • Orozco A, Ahmad M, Rooney D, Walker G (2007) Dilute acid hydrolysis of cellulose and cellulosic bio-waste using a microwave reactor system. Process Saf Environ Prot 85:446–449

    Article  Google Scholar 

  • Palmqvist B, Wiman M, Lidén G (2011) Effect of mixing on enzymatic hydrolysis of steam-pretreated spruce: a quantitative analysis of conversion and power consumption. Biotechnol Biofuels 4:10

    Article  Google Scholar 

  • Perez-Pimienta JA, Flores-Gómez CA, Ruiz HA, Sathitsuksanoh N, Balan V, Sousa LC, Dale BE, Singh S, Simmons BA (2016) Evaluation of agave bagasse recalcitrance using AFEXTM, autohydrolysis, and ionic liquid pretreatments. Bioresour Technol 211:216–223

    Article  Google Scholar 

  • Pu Y, Hu F, Huang F, Davison BH, Ragauskas A (2013) Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuels 6:15

    Article  Google Scholar 

  • Qi B, Chen X, Su Y, Wan Y (2011) Enzyme adsorption and recycling during hydrolysis of wheat straw lignocellulose. Bioresour Technol 102:2881–2889

    Article  Google Scholar 

  • Qing Q, Wyman CE (2011) Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnol Biofuels 4:18

    Article  Google Scholar 

  • Ramachandriya KD, Wilkins M, Atiyeh HK, Dunford NT, Hiziroglu S (2013) Effect of high dry solids loading on enzymatic hydrolysis of acid bisulfite pretreated Eastern redcedar. Bioresour Technol 147:168–176

    Article  Google Scholar 

  • Ramos LP, Nazhad MM, Saddler JN (1993) Effect of enzymatic hydrolysis on the morphology and fine structure of pretreated cellulosic residues. Enzyme Microb Technol 15:821–831

    Article  Google Scholar 

  • Renewable Fuels Association (RFA) (2015) Industry Statistics. Available from: http://www.ethanolrfa.org/resources/industry/statistics. Accessed 12 Nov 2015

  • Rodrigues AC, Felby C, Gama M (2014) Cellulase stability, adsorption/desorption profiles and recycling during successive cycles of hydrolysis and fermentation of wheat straw. Bioresour Technol 156:163–169

    Article  Google Scholar 

  • Rodrigues AC, Haven MO, Lindedam J, Felby C, Gama M (2015) Celluclast and Cellic® CTec2: saccharification/fermentation of wheat straw, solid–liquid partition and potential of enzyme recycling by alkaline washing. Enzyme Microb Tech 79–80:70–77

    Article  Google Scholar 

  • Romaní A, Ruiz HA, Pereira FB, Domingues L, Teixeira JA (2013) Fractionation of eucalyptus globulus wood by glycerol–water pretreatment: optimization and modeling. Ind Eng Chem Res 52:14342–14352

    Article  Google Scholar 

  • Romaní A, Ruiz HA, Pereira FB, Teixeira JA, Domingues L (2014a) Integrated approach for effective bioethanol production using whole slurry from autohydrolyzed Eucalyptus globulus wood at high-solid loadings. Fuel 135:482–491

    Article  Google Scholar 

  • Romaní A, Ruiz HA, Pereira FB, Domingues L, Teixeira JA (2014b) Effect of hemicellulose liquid phase on the enzymatic hydrolysis of autohydrolyzed Eucalyptus globulus wood. Biomass Convers Bioref 4:77–86

    Article  Google Scholar 

  • Romaní A, Ruiz HA, Teixeira JA, Domingues L (2016) Valorization of eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: an integrated and intensified approach. Renew Energy 95:1–9

    Article  Google Scholar 

  • Ruiz HA (2011) Process development for bioethanol production using wheat straw biomass. PhD Thesis, Centre of Biological Engineering, University of Minho, Braga, Portugal

    Google Scholar 

  • Ruiz HA, Ruzene DS, Silva DP, Quintas MAC, Vicente AA, Teixeira JA (2011) Evaluation of a hydrothermal process for pretreatment of wheat straw—effect of particle size and process conditions. J Chem Technol Biotechnol 86:88–94

    Article  Google Scholar 

  • Ruiz HA, Silva DP, Ruzene DS, Lima LF, Vicente AA, Teixeira JA (2012a) Bioethanol production from hydrothermal pretreated wheat straw by a flocculating Saccharomyces cerevisiae strain—effect of process conditions. Fuel 95:528–536

    Article  Google Scholar 

  • Ruiz HA, Vicente AA, Teixeira JA (2012b) Kinetic modeling of enzymatic saccharification using wheat straw under autohydrolysis and organosolv process. Ind Crop Prod 36:100–107

    Article  Google Scholar 

  • Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013a) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sustain Energ Rev 21:35–51

    Article  Google Scholar 

  • Ruiz HA, Cerqueira MA, Silva HD, Rodríguez-Jasso RM, Vicente AA, Teixeira JA (2013b) Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film. Carbohydr Polym 92:2154–2162

    Article  Google Scholar 

  • Ruiz HA, Rodríguez-Jasso RM, Aguedo M, Kádár S (2015) Hydrothermal pretreatments of macroalgal biomass for biorefineries. In: Prokop A, Bajpai RK, Zappi ME (eds) Algal biorefineries, vol 2. Products and refinery design. Springer International Publishing Switzerland, pp 467–491

    Google Scholar 

  • Ruiz HA, Martínez A, Vermerris W (2016) Bioenergy potential, energy crops, and biofuel production in Mexico. Bioenergy Res 9:981–984

    Article  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  Google Scholar 

  • Silva ASA, Souza MF, Ballesteros I, Manzanares P, Ballesteros M, Bon EPS (2016) High-solids content enzymatic hydrolysis of hydrothermally pretreated sugarcane bagasse using a laboratory-made enzyme blend and commercial preparations. Process Biochem 51:1561–1567

    Article  Google Scholar 

  • Silveira MHL, Morais ARC, Lopes AMC, Olekszyszen DN, Lukasik RB, Andreaus J, Ramos LP (2015) Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. ChemSusChem 8:3366–3390

    Article  Google Scholar 

  • Stephen JD, Mabee WE, Saddler JN (2011) Will second-generation ethanol be able to compete with first-generation ethanol? Opportunities for cost reduction. Biofuels Bioprod Biorefin 6:159–176

    Article  Google Scholar 

  • Sun Y, Cheng JY (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  Google Scholar 

  • Szijártó N, Siika-aho M, Sontag-Strohm T, Viikari L (2011) Liquefaction of hydrothermally pretreated wheat straw at high-solids content by purified Trichoderma enzymes. Bioresour Technol 102:1968–1974

    Article  Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresources 2:707–738

    Google Scholar 

  • Travaini R, Morales-Otero MD, Coca M, Da-Silva R, Bolado S (2013) Sugarcane bagasse ozonolysis pretreatment: effect on enzymatic digestibility and inhibitory compound formation. Bioresour Technol 133:332–339

    Article  Google Scholar 

  • Tu M, Zhang X, Paice M, Macfarlane P, Saddler JN (2009) The potential of enzyme recycling during the hydrolysis of a mixed softwood feedstock. Bioresour Technol 100:6407–6415

    Article  Google Scholar 

  • Wahlström RM, Suurnäkki A (2015) Enzymatic hydrolysis of lignocellulosic polysaccharides in the presence of ionic liquids. Green Chem 17:694–714

    Article  Google Scholar 

  • Wang W, Kang L, Wei H, Arora R, Lee YY (2011) Study on the decreased sugar yield in enzymatic hydrolysis of cellulosic substrate at high solid loading. Appl Biochem Biotechnol 164:1139–1149

    Article  Google Scholar 

  • Wulfhorst H, Harwardt N, Giese H, Jäger G, Zeithammel EU, Ellinidou E, Falkenberg M, Büchs J, Spiess AC (2015) Enzymatic degradation of lignocellulose for synthesis of biofuels and other value-added products. In: Klaas M (ed) Fuels from biomass: an interdisciplinary approach, vol 129. Springer, New York, pp 283–311

    Google Scholar 

  • Xiang Q, Lee YY, Torget RW (2004) Kinetics of glucose decomposition during dilute-acid hydrolysis of lignocellulosic biomass. Appl Biochem Biotechnol 113–116:1127–1138

    Article  Google Scholar 

  • Xing Y, Ji L, Liu Z, Zhang W, Jiang J (2015) Effects of Gleditsia saponin on high-solids enzymatic hydrolysis of furfural residues. Ind Crop Prod 64:209–2014

    Article  Google Scholar 

  • Xing Y, Bu L, Sun D, Liu Z, Liu S, Jiang J (2016) Enhancement of high-solids enzymatic hydrolysis and fermentation of furfural residues by addition of Gleditsia saponin. Fuel 177:142–147

    Article  Google Scholar 

  • Yang M, Li W, Liu B, Li Q, Xing J (2010) High-concentration sugars production from corn stover based on combined pretreatments and fed-batch process. Bioresour Technol 101:4884–4888

    Article  Google Scholar 

  • Yeh AI, Huang YC, Chen SH (2010) Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydr Polym 79:192–199

    Article  Google Scholar 

  • Yennamalli RM, Rader AJ, Kenny AJ, Wolt JD, Sen TZ (2013) Endoglucanases: insights into thermostability for biofuel applications. Biotechnol Biofuels 6:136

    Article  Google Scholar 

  • Zhang DS, Yang Q, Zhu JY, Pan XJ (2013) Sulfite (SPORL) pretreatment of switchgrass for enzymatic saccharification. Bioresour Technol 129:127–134

    Article  Google Scholar 

  • Zhang J, Shao S, Bao J (2016a) Long term storage of dilute acid pretreatment corn stover feedstock and ethanol fermentability evaluation. Bioresour Technol 201:355–359

    Google Scholar 

  • Zhang Z, Su B, Wu M, Lin J, Yang L (2016b) Strategies for eliminating L-arabinitol in the bioconversion of xylitol. Process Biochem 51:1964–1972

    Google Scholar 

  • Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53

    Article  Google Scholar 

  • Zhu Y, Malten M, Torry-Smith M, McMillan JD, Sticket JJ (2011) Calculating sugar yields in high solids hydrolysis of biomass. Bioresour Technol 102:2897–2903

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Heather L. Trajano (Department of Chemical and Biological Engineering, The University of British Columbia, Canada), for her comments and revision of this chapter. Financial support from the Energy Sustainability Fund 2014–05 (CONACYT-SENER), Mexican Centre for Innovation in Bioenergy (Cemie-Bio), Cluster of Bioalcohols (Ref. 249564) is gratefully acknowledged. We also gratefully acknowledge support for this research by the Mexican Science and Technology Council (CONACYT, Mexico) for the infrastructure project—INFR201601 (Ref. 269461) and Basic Science Project-2015-01 (Ref. 254808). The authors Daniela Aguilar and Anely Lara thank to the Mexican Science and Technology Council (CONACYT, Mexico) for their Master fellowship grant, and Elisa Zanuso thanks Energy Sustainability Fund 2014–05 (CONACYT-SENER, Ref. 249564), for Undergraduate fellowship grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor A. Ruiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aguilar, D.L. et al. (2018). Operational Strategies for Enzymatic Hydrolysis in a Biorefinery. In: Kumar, S., Sani, R. (eds) Biorefining of Biomass to Biofuels. Biofuel and Biorefinery Technologies, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-67678-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67678-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67677-7

  • Online ISBN: 978-3-319-67678-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics