Skip to main content

A Unified Framework for Tumor Proliferation Score Prediction in Breast Histopathology

  • Conference paper
  • First Online:
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (DLMIA 2017, ML-CDS 2017)

Abstract

We present a unified framework to predict tumor proliferation scores from breast histopathology whole slide images. Our system offers a fully automated solution to predicting both a molecular data-based, and a mitosis counting-based tumor proliferation score. The framework integrates three modules, each fine-tuned to maximize the overall performance: An image processing component for handling whole slide images, a deep learning based mitosis detection network, and a proliferation scores prediction module. We have achieved 0.567 quadratic weighted Cohen’s kappa in mitosis counting-based score prediction and 0.652 F1-score in mitosis detection. On Spearman’s correlation coefficient, which evaluates predictive accuracy on the molecular data based score, the system obtained 0.6171. Our approach won first place in all of the three tasks in Tumor Proliferation Assessment Challenge 2016 which is MICCAI grand challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://tupac.tue-image.nl/node/3.

  2. 2.

    Compared methods are denoted by alphabet to anonymize the names of the participating teams.

References

  1. Albarqouni, S., Baur, C., Achilles, F., Belagiannis, V., Demirci, S., Navab, N.: Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 35(5), 1313–1321 (2016)

    Article  Google Scholar 

  2. Baak, J.P., van Diest, P.J., Voorhorst, F.J., van der Wall, E., Beex, L.V., Vermorken, J.B., Janssen, E.A.: Prospective multicenter validation of the independent prognostic value of the mitotic activity index in lymph node-negative breast cancer patients younger than 55 years. J. Clin. Oncol. 23(25), 5993–6001 (2005)

    Article  Google Scholar 

  3. Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, O., Guertin, D.A., Chang, J.H., Lindquist, R.A., Moffat, J., et al.: Cellprofiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7(10), R100 (2006)

    Article  Google Scholar 

  4. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40763-5_51

    Chapter  Google Scholar 

  5. Elston, C.W., Ellis, I.O.: Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19(5), 403–410 (1991)

    Article  Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. arXiv preprint arXiv:1603.05027 (2016)

  7. Kamentsky, L., Jones, T.R., Fraser, A., Bray, M.A., Logan, D.J., Madden, K.L., Ljosa, V., Rueden, C., Eliceiri, K.W., Carpenter, A.E.: Improved structure, function and compatibility for cellprofiler: modular high-throughput image analysis software. Bioinformatics 27(8), 1179–1180 (2011)

    Article  Google Scholar 

  8. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  9. Macenko, M., Niethammer, M., Marron, J.S., Borland, D., Woosley, J.T., Guan, X., Schmitt, C., Thomas, N.E.: A method for normalizing histology slides for quantitative analysis. In: ISBI, vol. 9, pp. 1107–1110 (2009)

    Google Scholar 

  10. Nielsen, T.O., Parker, J.S., Leung, S., Voduc, D., Ebbert, M., Vickery, T., Davies, S.R., Snider, J., Stijleman, I.J., Reed, J., et al.: A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin. Cancer Res. 16(21), 5222–5232 (2010)

    Article  Google Scholar 

  11. Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11(285–296), 23–27 (1975)

    Google Scholar 

  12. Van Diest, P., Van Der Wall, E., Baak, J.: Prognostic value of proliferation in invasive breast cancer: a review. J. Clin. Pathol. 57(7), 675–681 (2004)

    Article  Google Scholar 

  13. Veta, M., van Diest, P.J., Jiwa, M., Al-Janabi, S., Pluim, J.P.: Mitosis counting in breast cancer: object-level interobserver agreement and comparison to an automatic method. PLoS ONE 11(8), e0161286 (2016)

    Article  Google Scholar 

  14. Veta, M., Van Diest, P.J., Willems, S.M., Wang, H., Madabhushi, A., Cruz-Roa, A., Gonzalez, F., Larsen, A.B., Vestergaard, J.S., Dahl, A.B., et al.: Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med. Image Anal. 20(1), 237–248 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyunghyun Paeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Paeng, K., Hwang, S., Park, S., Kim, M. (2017). A Unified Framework for Tumor Proliferation Score Prediction in Breast Histopathology. In: Cardoso, M., et al. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support . DLMIA ML-CDS 2017 2017. Lecture Notes in Computer Science(), vol 10553. Springer, Cham. https://doi.org/10.1007/978-3-319-67558-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67558-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67557-2

  • Online ISBN: 978-3-319-67558-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics