Skip to main content

Monitoring and Controlling Speed for an Autonomous Mobile Platform Based on the Hall Sensor

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10449))

Abstract

Cyber Physical Systems are often used in the automotive industry as embedded systems for constructing Advanced Driver Assistance Systems. Further development of current applications and the creation of new applications for vehicle and mobile platforms that are based on sensor fusion are essential for the future. While ADAS are used to actively participate in the controlling a vehicle, they can also be used to control mobile platforms in industry. In the article, the results of tests of different rates of data acquisition from Hall sensors to measure speed for mobile platform are presented. The purpose of the research was to determine the optimal platform parameter to indicate the refresh frequency in such a way that the measurements obtained from a Hall sensor will be reliable and will require less of the available computing power. Additionally, the results from investigations of the precise movement for a specified distance using a Hall sensor for a mobile platform are presented.

This is a preview of subscription content, log in via an institution.

References

  1. Cyber-Physical Systems (CPS) (NSF17529) | NSF - National Science Foundation. https://www.nsf.gov/pubs/2017/nsf17529/nsf17529.htm

  2. Poovendran, R.: Cyber-physical systems: close encounters between two parallel worlds [point of view]. Proc. IEEE 98, 1363–1366 (2010)

    Article  Google Scholar 

  3. Cupek, R., Huczala, L.: Passive PROFIET I/O OPC DA server. Presented at the IEEE Conference on Emerging Technologies and Factory Automation, ETFA 2009 (2009)

    Google Scholar 

  4. Maka, A., Cupek, R., Rosner, J.: OPC UA object oriented model for public transportation system. Presented at the 2011 Fifth UKSim European Symposium on Computer Modeling and Simulation (EMS) (2011)

    Google Scholar 

  5. Baheti, R., Gill, H.: Cyber-physical systems. Impact Control Technol. 12, 161–166 (2011)

    Google Scholar 

  6. Flak, J., Gaj, P., Tokarz, K., Wideł, S., Ziębiński, A.: Remote monitoring of geological activity of inclined regions – the concept. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2009. CCIS, pp. 292–301. Springer, Berlin (2009). doi:10.1007/978-3-642-02671-3_34

    Chapter  Google Scholar 

  7. Wang, Y., Vuran, M.C., Goddard, S.: Cyber-physical systems in industrial process control. ACM SIGBED Rev. 5, 1–2 (2008)

    Article  Google Scholar 

  8. Thompson, C., White, J., Dougherty, B., Schmidt, D.C.: Optimizing mobile application performance with model-driven engineering. In: Lee, S., Narasimhan, P. (eds.) SEUS 2009. LNCS, vol. 5860, pp. 36–46. Springer Berlin Heidelberg, Berlin (2009). doi:10.1007/978-3-642-10265-3_4

    Chapter  Google Scholar 

  9. Fleming, W.J.: Overview of automotive sensors. IEEE Sens. J. 1, 296–308 (2001)

    Article  Google Scholar 

  10. Ziebinski, A., Cupek, R., Grzechca, D., Chruszczyk, L.: Review of advanced driver assistance systems (ADAS). Presented at the 13th International Conference on Computer Methods Science Engineering (2017)

    Google Scholar 

  11. el Popovic, R., Randjelovic, Z., Manic, D.: Integrated Hall-effect magnetic sensors. Sens. Actuators A Phys. 91, 46–50 (2001)

    Article  Google Scholar 

  12. Proca, A.B., Keyhani, A.: Identification of variable frequency induction motor models from operating data. IEEE Trans. Energy Convers. 17, 24–31 (2002)

    Article  Google Scholar 

  13. Budzan, S., Kasprzyk, J.: Fusion of 3D laser scanner and depth images for obstacle recognition in mobile applications. Opt. Lasers Eng. 77, 230–240 (2016)

    Article  Google Scholar 

  14. Grzechca, D., Wrobel, T., Bielecki, P.: Indoor location and identification of objects with video surveillance system and WiFi module (2014)

    Google Scholar 

  15. Kobylecki, M., Kania, D., Simos, T.E., Kalogiratou, Z., Monovasilis, T.: Double-tick realization of binary control program. Presented at the AIP Conference Proceedings (2016)

    Google Scholar 

  16. Ziębiński, A., Świerc, S.: The VHDL implementation of reconfigurable MIPS processor. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds.) Man-Machine Interactions. AINSC, pp. 663–669. Springer, Berlin (2009). doi:10.1007/978-3-642-00563-3_69

    Chapter  Google Scholar 

  17. Behere, S., Törngren, M.: A functional architecture for autonomous driving. Presented at the Proceedings of the First International Workshop on Automotive Software Architecture (2015)

    Google Scholar 

  18. Czyba, R., Niezabitowski, M., Sikora, S.: Construction of laboratory stand and regulation in ABS car system. Presented at the 2013 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE May 2013

    Google Scholar 

  19. Rodriguez, F., Emadi, A.: A novel digital control technique for brushless DC motor drives. IEEE Trans. Ind. Electron. 54, 2365–2373 (2007)

    Article  Google Scholar 

  20. Shao, J., Nolan, D., Hopkins, T.: A novel direct back EMF detection for sensorless brushless DC (BLDC) motor drives (2002)

    Google Scholar 

  21. Samoylenko, N., Han, Q., Jatskevich, J.: Dynamic performance of brushless DC motors with unbalanced hall sensors. IEEE Trans. Energy Convers. 23, 752–763 (2008)

    Article  Google Scholar 

  22. Pan, C., Chen, L., Chen, L., Jiang, H., Li, Z., Wang, S.: Research on motor rotational speed measurement in regenerative braking system of electric vehicle. Mech. Syst. Signal Process. 66–67, 829–839 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union from the FP7-PEOPLE-2013-IAPP AutoUniMo project “Automotive Production Engineering Unified Perspective based on Data Mining Methods and Virtual Factory Model” (grant agreement no: 612207) and research work financed from funds for science in years 2016-2017 allocated to an international co-financed project (grant agreement no: 3491/7.PR/15/2016/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Fojcik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ziebinski, A., Bregulla, M., Fojcik, M., Kłak, S. (2017). Monitoring and Controlling Speed for an Autonomous Mobile Platform Based on the Hall Sensor. In: Nguyen, N., Papadopoulos, G., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2017. Lecture Notes in Computer Science(), vol 10449. Springer, Cham. https://doi.org/10.1007/978-3-319-67077-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67077-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67076-8

  • Online ISBN: 978-3-319-67077-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics