Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1030))

Abstract

Peptides have been used as drugs to treat various health conditions, and they are also being developed as diagnostic agents. Due to their receptor selectivity, peptides have recently been utilized for drug delivery to target drug molecules to specific types of cells (i.e. cancer cells, immune cells) to lower the side effects of the drugs. In this case, the drug is conjugated to the carrier peptide for directing the drug to the target cells (e.g. cancer cells) with higher expression of a specific receptor that recognizes the carrier peptide. As a result, the drug is directed to the target diseased cells without affecting the normal cells. Peptides are also being developed for improving drug delivery through the intestinal mucosa barrier (IMB) and the blood-brain barrier (BBB). These peptides were derived from intercellular junction proteins such as occludins, claudins, and cadherins and improve drug delivery through the IMB and BBB via the paracellular pathways. It is hypothesized that the peptides modulate protein-protein interactions in the intercellular junctions of the IMB and BBB to increase the porosity of paracellular pathways of the barriers. These modulator peptides have been shown to enhance brain delivery of small molecules and medium-sized peptides as well as a large protein such as 65 kDa albumin. In the future, this method has the potential to improve oral and brain delivery of therapeutic and diagnostic peptides and proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AJ:

adherens junction

ANG:

angiopep

APaseP:

aminopeptidase P

APP:

amyloid precursor protein

BBB:

blood brain barrier

BBMEC:

bovine brain microvessel endothelial cells

CAD:

cis–asconitic anhydride–DOX

C–CPE:

clostridium perfringens enterotoxin

CNS:

central nervous systems

CPP:

cell penetrating peptide

CPT:

camptothecin

DOX:

doxorubicin

DSDS:

drug self-delivery system

DSPE-PEG:

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy-(polyethylene glycol)

EC-1:

extracellular domain-1

ECM:

extracellular matrix

EGF:

epidermal growth factor

EGRF:

epidermal growth factor receptor

EGTA:

ethyleneglycol-bis-(β-aminoethyl ether)-N, N′-tetraacetic acid

ERK:

extracellular signal-regulated kinases

FACS:

fluorescence-activated cell sorting

FDA:

Food and Drug Administration

FITC:

fluorescein isothiocyanate

GABA:

γ-aminobutyric acid

Gd-DTPA:

gadopentetic acid

GIP:

glucose-dependent insulinotropic peptide

GLP-1:

glucagon-like peptide-1

GMB:

glioblastoma multiforme

GnRH :

gonadotrophin-releasing hormone

HEK:

human embryonic kidney cells

HIV-1:

human immunodeficiency virus 1

HPMA:

(2-hydroxypropyl) methacrylamide

ICAM-1:

intercellular adhesion molecule-1

IMB:

intestinal mucosa barrier

JAM:

junction adhesion molecules

LFA-1:

lymphocyte function-associated antigen-1

LHRH:

luteinizing hormone-releasing hormones

LRP-1:

lipoprotein-related protein 1

MDCK:

Madin-Darby Canine Kidney Epithelial Cells

MDR1:

multi drug resistance-1

MEK:

mitogen-activated protein kinase

MMAF:

monomethyl auristatin F

MMPs:

matrix metalloproteinases

MRI:

magnetic resonance imaging

NB:

nanobubbles

NLS:

nuclear localization signal

NMR:

nuclear magnetic resonance

NRP-1:

neuropilin-1

OCT:

octreotide

ODN :

octadecanol

OVCAR-3:

ovarian cancer cell-3

PAMAM-PAsp-PEG:

poly(amidoamine)-b-poly(aspartic acid)-b-poly(ethylene glycol)

pAntp:

antennapedia homeodomain protein of Drosophila

PEG:

polyethylene glycol

PET:

positron emission tomography

pHLIP:

pH low insertion peptide

PI3K:

phosphoinositide 3-kinase

PTX:

paclitaxel

RES :

reticuloendothelial system

RGD:

Arg-Gly-Asp

SA:

stearylamine

SCCHN:

squamous cell carcinoma of head and neck

SI :

secretase inhibitor

siRNA:

small interfering RNA

STTR:

somatostatin receptors

TAMRA:

tetramethylrhodamine

TAT:

trans-activating transcriptional activator

TEER:

trans-epithelial electrical resistance

TfR:

transferrin receptor

TJ:

tight junction

TPP :

triphenylphosphonium

ZO:

zonula occludin

Zot :

zonula occludens toxin

References

  • Alaofi A, On N, Kiptoo P, Williams TD, Miller DW, Siahaan TJ (2016) Comparison of linear and cyclic His-Ala-Val peptides in modulating the blood-brain barrier permeability: impact on delivery of molecules to the brain. J Pharm Sci 105:797–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alaofi A, Farokhi E, Prasasty VD, Anbanandam A, Kuczera K, Siahaan TJ (2017) Probing the interaction between cHAVc3 peptide and the EC1 domain of E-cadherin using NMR and molecular dynamics simulations. J Biomol Struct Dyn 35:92–104

    Article  CAS  PubMed  Google Scholar 

  • Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1:a002584

    Article  PubMed  PubMed Central  Google Scholar 

  • Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380

    Article  CAS  PubMed  Google Scholar 

  • Bajusz S, Janaky T, Csernus VJ, Bokser L, Fekete M, Srkalovic G, Redding TW, Schally AV (1989) Highly potent analogues of luteinizing hormone-releasing hormone containing D-phenylalanine nitrogen mustard in position 6. Proc Natl Acad Sci U S A 86:6318–6322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barve A, Jain A, Liu H, Jin W, Cheng K (2016) An enzyme-responsive conjugate improves the delivery of a PI3K inhibitor to prostate cancer. Nanomedicine 12:2373–2381

    Article  CAS  PubMed  Google Scholar 

  • Beer AJ, Haubner R, Sarbia M, Goebel M, Luderschmidt S, Grosu AL, Schnell O, Niemeyer M, Kessler H, Wester HJ, Weber WA, Schwaiger M (2006) Positron emission tomography using [18F]Galacto-RGD identifies the level of integrin αVβ3 expression in man. Clin Cancer Res 12:3942–3949

    Google Scholar 

  • Bell AF, Erickson EN, Carter CS (2014) Beyond labor: the role of natural and synthetic oxytocin in the transition to motherhood. J Midwifery Womens Health 59:35–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Bocsik A, Walter FR, Gyebrovszki A, Fülöp L, Blasig I, Dabrowski S, Ötvös F, Tóth A, Rákhely G, Veszelka S, Vastag M, Szabó-Révész P, Deli MA (2016) Reversible opening of intercellular junctions of intestinal epithelial and brain endothelial cells with tight junction modulator peptides. J Pharm Sci 105:754–765

    Article  CAS  PubMed  Google Scholar 

  • Broder MS, Beenhouwer D, Strosberg JR, Neary MP, Cherepanov D (2015) Gastrointestinal neuroendocrine tumors treated with high dose octreotide-LAR: a systematic literature review. World J Gastroenterol 21:1945–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns KE, Hensley H, Robinson MK, Thévenin D (2017) Therapeutic efficacy of a family of pHLIP-MMAF conjugates in cancer cells and mouse models. Mol Pharm 14:415–422

    Article  CAS  PubMed  Google Scholar 

  • Büyüktimkin B, Stewart Jr J, Tabanor K, Kiptoo P, Siahaan TJ (2016). Protein and peptide conjugates for targeting therapeutics and diagnostics to specific cells. In: Wang B, Hu L, Siahaan TJ (eds) Drug delivery: principles and applications, 2nd. Wiley, Hoboken

    Google Scholar 

  • Callahan J, Kopecek J (2006) Semitelechelic HPMA copolymers functionalized with triphenylphosphonium as drug carriers for membrane transduction and mitochondrial localization. Biomacromolecules 7:2347–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Plasencia C, Hou Y, Neamati N (2005) Synthesis and biological evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrin-targeted drug delivery. J Med Chem 48:1098–1106

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zhang XY, Shen Y, Fan LL, Ren ML, Wu YP (2016) Synthetic paclitaxel-octreotide conjugate reversing the resistance of A2780/Taxol to paclitaxel in xenografted tumor in nude mice. Oncotarget 7:83451–83461

    PubMed  PubMed Central  Google Scholar 

  • Cordova A, Woodrick J, Grindrod S, Zhang L, Saygideger-Kont Y, Wang K, DeVito S, Daniele SG, Paige M, Brown ML (2016) Aminopeptidase P mediated targeting for breast tissue specific conjugate delivery. Bioconjug Chem 27:1981–1990

    Article  CAS  PubMed  Google Scholar 

  • Deli MA (2009) Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. BBA-Biomembranes 1788:892–910

    Article  CAS  PubMed  Google Scholar 

  • Dharap SS, Qiu B, Williams GC, Sinko P, Stein S, Minko T (2003) Molecular targeting of drug delivery systems to ovarian cancer by BH3 and LHRH peptides. J Control Rel 91:61–73

    Article  CAS  Google Scholar 

  • Dunehoo AL, Anderson M, Majumdar S, Kobayashi N, Berkland C, Siahaan TJ (2006) Cell adhesion molecules for targeted drug delivery. J Pharm Sci 95:1856–1872

    Article  CAS  PubMed  Google Scholar 

  • Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128

    Article  CAS  PubMed  Google Scholar 

  • Garrod D, Chidgey M (2008) Desmosome structure, composition and function. Biochim Biophys Acta 1778:572–587

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE (2003) Tight junction proteins. Prog Biophys Mol Biol 81:1–44

    Article  CAS  PubMed  Google Scholar 

  • Hamann PR, Hinman LM, Beyer CF, Lindh D, Upeslacis J, Flowers DA, Bernstein I (2002) An anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjug Chem 13:40–46

    Article  CAS  PubMed  Google Scholar 

  • Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, Becker KF, Goebel M, Hein R, Wester HJ, Kessler H, Schwaiger M (2005) Noninvasive visualization of the activated αVβ3 integrin in cancer patients by positron emission tomography and [18F]Galacto-RGD. PLoS Med 2:e70

    Google Scholar 

  • Hejna M, Schmidinger M, Raderer M (2002) The clinical role of somatostatin analogues as antineoplastic agents: much ado about nothing? Ann Oncol 13:653–668

    Article  CAS  PubMed  Google Scholar 

  • Herman RE, Makienko EG, Prieve MG, Fuller M, Houston ME Jr, Johnson PH (2007) Phage display screening of epithelial cell monolayers treated with EGTA: identification of peptide FDFWITP that modulates tight junction activity. J Biomol Screen 12:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Yi X, Kong D, Chen L, Min G (2016) Controlled release strategy of paclitaxel by conjugating to matrix metalloproteinases-2 sensitive peptide. Oncotarget 7:52230–52238

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen KD, Nori A, Tijerina M, Kopecková P, Kopecek J (2003) Cytoplasmic delivery and nuclear targeting of synthetic macromolecules. J Control Release 87:89–105

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Wang X, Liu X, Lv W, Zhang H, Zhang M, Li X, Xin H, Xu Q (2017) Enhanced antiglioma efficacy of ultrahigh loading capacity paclitaxel prodrug conjugate self-assembled targeted nanoparticles. ACS Appl Mater Interfaces 9:211–217

    Article  CAS  PubMed  Google Scholar 

  • Jones DP (2010) Redox sensing: orthogonal control in cell cycle and apoptosis signalling. J Internal Med 268:432–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang B, Mackey MA, El-Sayed MA (2010) Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc 132:1517–1519

    Article  CAS  PubMed  Google Scholar 

  • Kaspar AA, Reichert JM (2013) Future directions for peptide therapeutics development. Drug Discov Today 18:807–817

    Article  CAS  PubMed  Google Scholar 

  • Kim JA, Casalini T, Brambilla D, Leroux JC (2016) Presumed LRP1-targeting transport peptide delivers beta-secretase inhibitor to neurons in vitro with limited efficiency. Sci Rep 6:34297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiptoo P, Sinaga E, Calcagno AM, Zhao H, Kobayashi N, Tambunan US, Siahaan TJ (2011) Enhancement of drug absorption through the blood-brain barrier and inhibition of intercellular tight junction resealing by E-cadherin peptides. Mol Pharm 8:239–249

    Article  CAS  PubMed  Google Scholar 

  • Knop FK, Bronden A, Vilsboll T (2017) Exenatide: pharmacokinetics, clinical use, and future directions. Expert Opin Pharmacother 18:555–571

    Article  CAS  PubMed  Google Scholar 

  • Laksitorini M, Prasasty VD, Kiptoo PK, Siahaan TJ (2014) Pathways and progress in improving drug delivery through the intestinal mucosa and blood-brain barriers. Ther Deliv 5:1143–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laksitorini MD, Kiptoo PK, On NH, Thliveris JA, Miller DW, Siahaan TJ (2015) Modulation of intercellular junctions by cyclic-ADT peptides as a method to reversibly increase blood-brain barrier permeability. J Pharm Sci 104:1065–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leal M, Sapra P, Hurvitz SA, Senter P, Wahl A, Schutten M, Shah DK, Haddish-Berhane N, Kabbarah O (2014) Antibody-drug conjugates: an emerging modality for the treatment of cancer. Annals NY Acad Sci 1321:41–54

    Article  CAS  Google Scholar 

  • Li Y, Zheng X, Gong M, Zhang J (2016) Delivery of a peptide-drug conjugate targeting the blood brain barrier improved the efficacy of paclitaxel against glioma. Oncotarget 7:79401–79407

    PubMed  PubMed Central  Google Scholar 

  • Limonta P, Montagnani MM, Marelli M, Motta M (2003) The biology of gonadotropin hormone-releasing hormone: role in the control of tumor growth and progression in humans. Front Neuroendocrinol 24:279–295

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Tan Y, Hu Y, Meng T, Wen L, Liu J, Cheng B, Yuan H, Huang X, Hu F (2016) A54 peptide modified and redox-responsive glucolipid conjugate micelles for intracellular delivery of doxorubicin in hepatocarcinoma therapy. ACS Appl Mater Interfaces 8:33148–33156

    Article  CAS  PubMed  Google Scholar 

  • Lutz KL, Siahaan TJ (1997a) Modulation of the cellular junction protein E-cadherin in bovine brain microvessel endothelial cells by cadherin peptides. Drug Deliv 4:187–193

    Article  CAS  Google Scholar 

  • Lutz KL, Siahaan TJ (1997b) Molecular structure of the apical junction complex and its contribution to the paracellular barrier. J Pharm Sci 86:977–984

    Article  CAS  PubMed  Google Scholar 

  • Majumdar S, Siahaan TJ (2012) Peptide-mediated targeted drug delivery. Med Res Rev 32:637–658

    Article  CAS  PubMed  Google Scholar 

  • Majumdar D, Rahman MA, Chen ZG, Shin DM (2016) Anticancer activity of drug conjugates in head and neck cancer cells. Front Biosci 8:358–369

    Article  Google Scholar 

  • Makagiansar IT, Avery M, Hu Y, Audus KL, Siahaan TJ (2001) Improving the selectivity of HAV-peptides in modulating E-cadherin-E-cadherin interactions in the intercellular junction of MDCK cell monolayers. Pharm Res 18:446–453

    Article  CAS  PubMed  Google Scholar 

  • Mas-Moruno C, Rechenmacher F, Kessler H (2010) Cilengitide: the first anti-angiogenic small molecule drug candidate design, synthesis and clinical evaluation. Anti Cancer Agents Med Chem 10:753–768

    Article  CAS  Google Scholar 

  • McEligot AJ, Yang S, Meyskens FL Jr (2005) Redox regulation by intrinsic species and extrinsic nutrients in normal and cancer cells. Ann Rev Nutr 25:261–295

    Article  CAS  Google Scholar 

  • Murányi J, Gyulavári P, Varga A, Bökönyi G, Tanai H, Vántus T, Pap D, Ludányi K, Mező G, Kéri G (2016) Synthesis, characterization and systematic comparison of FITC-labelled GnRH-I, −II and -III analogues on various tumour cells. J Pept Sci 22:552–560

    Article  PubMed  Google Scholar 

  • Nagy A, Schally AV, Armatis P, Szepeshazi K, Halmos G, Kovacs M, Zarandi M, Groot K, Miyazaki M, Jungwirth A, Horvath J (1996) Cytotoxic analogs of luteinizing hormone-releasing hormone containing doxorubicin or 2-pyrrolinodoxorubicin, a derivative 500–1000 times more potent. Proc Natl Acad Sci U S A 93:7269–7273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuwelt EA, Maravilla KR, Frenkel EP, Rapaport SI, Hill SA, Barnett PA (1979) Osmotic blood-brain barrier disruption. Computerized tomographic monitoring of chemotherapeutic agent delivery. J Clin Invest 64:684–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuwelt EA, Hill SA, Frenkel EP (1984) Osmotic blood-brain barrier modification and combination chemotherapy: concurrent tumor regression in areas of barrier opening and progression in brain regions distant to barrier opening. Neurosurgery 15:362–366

    Article  CAS  PubMed  Google Scholar 

  • Neuwelt EA, Specht HD, Barnett PA, Dahlborg SA, Miley A, Larson SM, Brown P, Eckerman KF, Hellström KE, Hellström I (1987) Increased delivery of tumor-specific monoclonal antibodies to brain after osmotic blood-brain barrier modification in patients with melanoma metastatic to the central nervous system. Neurosurgery 20:885–895

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell MJ, Maddrell SH (1983) Paracellular and transcellular routes for water and solute movements across insect epithelia. J Exp Biol 106:231–253

    PubMed  Google Scholar 

  • On NH, Kiptoo P, Siahaan TJ, Miller DW et al (2014) Modulation of blood-brain barrier permeability in mice using synthetic E-cadherin peptide. Mol Pharm 11:974–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Páez Pereda M, Ledda MF, Goldberg V, Chervín A, Carrizo G, Molina H, Müller A, Renner U, Podhajcer O, Arzt E, Stalla GK (2000) High levels of matrix metalloproteinases regulate proliferation and hormone secretion in pituitary cells. J Clin Endocrin Metab 85:263–269

    Google Scholar 

  • Pal D, Audus KL, Siahaan TJ (1997) Modulation of cellular adhesion in bovine brain microvessel endothelial cells by a decapeptide. Brain Res 747:103–113

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2012) Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 32:1959–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redko B, Tuchinsky H, Segal T, Tobi D, Luboshits G, Ashur-Fabian O, Pinhasov A, Gerlitz G, Gellerman G (2016) Toward the development of a novel non-RGD cyclic peptide drug conjugate for treatment of human metastatic melanoma. Oncotarget 8:757–768

    PubMed Central  Google Scholar 

  • Regina A, Demeule M, Ché C, Lavallée I, Poirier J, Gabathuler R, Béliveau R, Castaigne JP (2008) Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br J Pharmacol 155:185–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruoslahti E (1994) Cell adhesion and tumor metastasis. Princess Takamatsu Symp 24:99–105

    CAS  PubMed  Google Scholar 

  • Ruoslahti E, Pierschbacher MD (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491–497

    Article  CAS  PubMed  Google Scholar 

  • Schneeberger EE, Lynch RD (2004) The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 286:C1213–C1228

    Article  CAS  PubMed  Google Scholar 

  • Sheng Y, Xu J, You Y, Xu F, Chen Y (2015) Acid-sensitive peptide-conjugated doxorubicin mediates the lysosomal pathway of apoptosis and reverses drug resistance in breast cancer. Mol Pharm 12:2217–2228

    Article  CAS  PubMed  Google Scholar 

  • Sheng Y, You Y, Chen Y (2016) Dual-targeting hybrid peptide-conjugated doxorubicin for drug resistance reversal in breast cancer. Int J Pharm 512:1–13

    Article  CAS  PubMed  Google Scholar 

  • Sinaga E, Jois SD, Avery M, Makagiansar IT, Tambunan US, Audus KL, Siahaan TJ (2002) Increasing paracellular porosity by E-cadherin peptides: discovery of bulge and groove regions in the EC1-domain of E-cadherin. Pharm Res 19:1170–1179

    Article  CAS  PubMed  Google Scholar 

  • Smith RAJ, Porteous CM, Gane AM, Murphy MP (2003) Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci U S A 100:5407–5412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song H, Zhang J, Wang W, Huang P, Zhang Y, Liu J, Li C, Kong D (2015) Acid-responsive PEGylated doxorubicin prodrug nanoparticles for neuropilin-1 receptor-mediated targeted drug delivery. Colloids Surf B Biointerfaces 136:365–374

    Article  CAS  PubMed  Google Scholar 

  • Sonoda N, Furuse M, Sasaki H, Yonemura S, Katahira J, Horiguchi Y, Tsukita S (1999) Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: evidence for direct involvement of claudins in tight junction barrier. J Cell Biol 147:195–204

    Article  PubMed  PubMed Central  Google Scholar 

  • Staat C, Coisne C, Dabrowski S, Stamatovic SM, Andjelkovic AV, Wolburg H, Engelhardt B, Blasig IE (2015) Mode of action of claudin peptidomimetics in the transient opening of cellular tight junction barriers. Biomaterials 54:9–20

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Li L, Yang QQ, Zhang ZR, Huang Y (2017) Two birds, one stone: dual targeting of the cancer cell surface and subcellular mitochondria by the galectin-3-binding peptide G3-C12. Acta Pharmacol Sin:1–17

    Google Scholar 

  • Tavelin S, Hashimoto K, Malkinson J, Lazorova L, Toth I, Artursson P (2003) A new principle for tight junction modulation based on occludin peptides. Mol Pharmacol 64:1530–1540

    Article  CAS  PubMed  Google Scholar 

  • Tella SH, Gallagher JC (2014) Prevention and treatment of postmenopausal osteoporosis. J Steroid Biochem Mol Biol 142:155–170

    Article  CAS  PubMed  Google Scholar 

  • Thomas FC, Taskar K, Rudraraju V, Goda S, Thorsheim HR, Gaasch JA, Mittapalli RK, Palmieri D, Steeg PS, Lockman PR, Smith QR (2009) Uptake of ANG1005, a novel paclitaxel derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer. Pharm Res 26:2486–2494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlig T, Kyprianou T, Martinelli FG, Oppici CA, Heiligers D, Hills D, Calvo XR, Verhaert P (2014) The emergence of peptides in the pharmaceutical business: from exploration to exploitation. EuPA Open Proteom 4:58–69

    Article  CAS  Google Scholar 

  • Ulapane KR, On N, Kiptoo P, Williams TD, Miller DW, Siahaan TJ (2017) Improving brain delivery of biomolecules via BBB modulation in mouse and rat: Detection using MRI, NIRF, and mass spectrometry. Nanotheranostics 1:217–231

    Google Scholar 

  • Van Itallie CM, Anderson JM (2014) Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol 36:157–165

    Article  PubMed  Google Scholar 

  • Wang Y, Wang L, Chen G, Gong S (2016) Carboplatin-complexed and cRGD-conjugated unimolecular nanoparticles for targeted ovarian cancer therapy. Macromol Biosci 17:1600292

    Article  Google Scholar 

  • Wong V, Gumbiner BM (1997) A synthetic peptide corresponding to the extracellular domain of occludin perturbs the tight junction permeability barrier. J Cell Biol 136:399–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie X, Yang Y, Lin W, Liu H, Liu H, Yang Y, Chen Y, Fu X, Deng J (2015) Cell-penetrating peptide-siRNA conjugate loaded YSA-modified nanobubbles for ultrasound triggered siRNA delivery. Colloids Surf B Biointerf 136:641–650

    Article  CAS  Google Scholar 

  • Yusuf-Makagiansar H, Anderson ME, Yakovleva TV, Murray JS, Siahaan TJ (2002) Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases. Med Res Rev 22:146–167

    Article  CAS  PubMed  Google Scholar 

  • Zheng K, Trivedi M, Siahaan TJ (2006) Structure and function of the intercellular junctions: barrier of paracellular drug delivery. Curr Pharm Des 12:2813–2824

    Article  CAS  PubMed  Google Scholar 

  • Zwanziger D, Hackel D, Staat C, Böcker A, Brack A, Beyermann M, Rittner H, Blasig IE (2012) A peptidomimetic tight junction modulator to improve regional analgesia. Mol Pharm 9:1785–1794

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH) for funding our research with R01-NS075374 grant. M.E.G.M thanks the NIH for NIH for an IRACDA postdoctoral fellowship (5K12GM063651). We would like to thank Nancy Harmony for proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruna J. Siahaan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ulapane, K.R., Kopec, B.M., Moral, M.E.G., Siahaan, T.J. (2017). Peptides and Drug Delivery. In: Sunna, A., Care, A., Bergquist, P. (eds) Peptides and Peptide-based Biomaterials and their Biomedical Applications. Advances in Experimental Medicine and Biology, vol 1030. Springer, Cham. https://doi.org/10.1007/978-3-319-66095-0_8

Download citation

Publish with us

Policies and ethics