Skip to main content

Intention-Based Human Robot Collaboration

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10462))

Included in the following conference series:

Abstract

In most of the current human-robot collaboration systems, the motion of robots is based on some predefined instructions, which can just deal with several specific situations. It is difficult to predefine a complete set of instructions for situations in the area of assistance and rehabilitation due to their high complexity and large variety. As a result, the instruction-based human-robot collaboration cannot be applied in these areas directly. In this paper, we propose a new human-robot collaboration framework based on the understanding of human intention. In this framework, the behavior of robots is based on the actively recognition and understanding of the dynamic scene and human intention, which is one of the core character of the coexisting robot. Based on this framework, we have accomplished some initial experiments, whose results show the effectiveness of our proposed system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kong, K., Bae, J., Tomizuka, M.: A compact rotary series elastic actuator for human assistive systems. IEEE/ASME Trans. Mechatron. 17(2), 288–297 (2012)

    Article  Google Scholar 

  2. Newman, W.S.: Stability and performance limits of interaction controllers. Trans. ASME J. Dyn. Syst. Meas. Control 114, 563–570 (1992)

    Article  MATH  Google Scholar 

  3. Hogan, N.: Impedance control: an approach to manipulation—part I: theory; part II: implementation; part III: applications. Trans. ASME J. Dyn. Syst. Meas. Control 107(1), 1–24 (1985)

    Article  Google Scholar 

  4. Wang, Z., Peer, A., Buss, M.: An HMM approach to realistic haptic human-robot interaction. In: Proceedings of 3rd Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 374–379 (2009)

    Google Scholar 

  5. Wakita, K., Huang, J., Di, P., Sekiyama, K., Fukuda, T.: Human-walking intention-based motion control of an omnidirectional-type cane robot. IEEE/ASME Trans. Mechatron. 18(1), 285–296 (2013)

    Article  Google Scholar 

  6. Li, Y., Ge, S.: Human-robot collaboration based on motion intention estimation. IEEE/ASME Trans. Mechatron. 19(3), 1007–1014 (2014)

    Article  Google Scholar 

  7. Thomaz, A., Hoffman, G., Cakmak, M.: Computational Human-Robot Interaction. Found. Trends R Robot. 4(2–3), 105–223 (2013)

    Google Scholar 

  8. Royakkers, L., van Est, R.: A literature review on new robotics: automation from love to war. Int. J. Soc. Robot. 7(5), 549–570 (2015)

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1915–1929 (2013)

    Article  Google Scholar 

  11. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  12. Sun, Y., Bo, L., Fox, D.: Attribute based object identification. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2096–2103 (2013)

    Google Scholar 

  13. Ye, C., Yang, Y., Fermuller, C., Aloimonos, Y.: What can I do around here? Deep functional scene understanding for cognitive robots. arXiv preprint, arXiv:1602.00032

  14. Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. Int. J. Robot. Res. (IJRR) 34(4–5), 705–724 (2013)

    Google Scholar 

  15. Aksoy, E., Abramov, A., Dorr, J., Ning, K., Dellen, B., Worgotter, F.: Learning the semantics of object-action relations by observation. J. Robot. Res. 30(10), 1229–1249 (2011)

    Article  Google Scholar 

  16. Ravichandar, H., Dani, A.: Human intention inference and motion modeling using approximate em with online learning. In: Proceedings of IEEE/RSJ International Conference on IEEE Intelligent Robots and Systems (IROS), pp. 1819–1824 (2015)

    Google Scholar 

  17. Pérez-D’Arpino, C., Shah, J.: Fast target prediction of human reaching motion for cooperative human-robot manipulation tasks using time series classification. In: Proceedings of 2015 IEEE International Conference on Robotics and Automation, pp. 6175–6182 (2015)

    Google Scholar 

  18. Bütepage, J., Kjellström, H., Kragic, D.: Anticipating many futures: online human motion prediction and synthesis for human-robot collaboration. arXiv preprint, arXiv:1702.08212

  19. Caire, P., Cornelius, G., Voos, H.: Collaborative explanation and response in assisted living environments enhanced with humanoid robots. In: Collaborative Explanation and Response in Assisted Living Environments Enhanced with Humanoid Robots (2016)

    Google Scholar 

  20. Koppula, H., Jain, A., Saxena, A.: Anticipatory planning for human-robot teams. In: Experimental Robotics, pp. 453–470 (2016)

    Google Scholar 

  21. Liu, R., Zhang, X.: Understanding human behaviors with an object functional role perspective for robotics. IEEE Trans. Cogn. Dev. Syst. 8(2), 115–127 (2016)

    Article  MathSciNet  Google Scholar 

  22. Wu, Y., Zheng, N., Liu, Y., Yuan, Z.: Fine-grained and layered object recognition. Int. J. Pattern Recogn. Artif. Intell. 26(2), 1255006 (2012)

    Article  MathSciNet  Google Scholar 

  23. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1933–1941 (2016)

    Google Scholar 

  24. Wei, P., Zhao, Y., Zheng, N., Zhu, S.: Modeling 4D human-object interactions for joint event segmentation, recognition, and object localization. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1165–1179 (2016)

    Article  Google Scholar 

  25. Liang, G., Lan, X., Wang, J., Wang, J., Zheng, N.: A limb-based graphical model for human pose estimation. IEEE Trans. Syst. Man Cybern. Syst. PP(39), 1–13 (2017)

    Google Scholar 

  26. Wang, Z., Mülling, K., Deisenroth, M.P., Ben Amor, H., Vogt, D., Schölkopf, B., Peters, J.: Probabilistic movement modeling for intention inference in human–robot interaction. Int. J. Robot. Res. 32(7), 841–858 (2013)

    Article  Google Scholar 

  27. Gu, S., Holly, E., Lillicrap, T., et al.: Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. arXiv preprint arXiv:1610.00633 (2016)

  28. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based; models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  29. Jiang, Y., Moseson, S., Saxena, A.: Efficient grasping from RGBD images: learning using a new rectangle representation. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, pp. 3304–3311 (2011)

    Google Scholar 

Download references

Acknowledgement

This work is supported in part by the National Key Research and Development Program of China under grant 2016YFB1000903, NSFC No. 61573268 and Program 973 No. 2012CB316400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuguang Lan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Liang, G., Lan, X., Zhang, H., Chen, X., Zheng, N. (2017). Intention-Based Human Robot Collaboration. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10462. Springer, Cham. https://doi.org/10.1007/978-3-319-65289-4_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65289-4_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65288-7

  • Online ISBN: 978-3-319-65289-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics