Skip to main content

Boron Isotopes in the Continental Crust: Granites, Pegmatites, Felsic Volcanic Rocks, and Related Ore Deposits

  • Chapter
  • First Online:
Boron Isotopes

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

Boron is an incompatible lithophile element that is readily transported by granitic melts and hydrous fluids and therefore is concentrated in the continental crust relative to the mantle. The isotopic composition of boron in crystalline rocks of the continental crust (e.g., metamorphic and igneous lithologies) varies over a wide range of −20 to +10‰, depending on the B-isotope composition of the protoliths and on fractionation effects caused by phase transitions (metamorphic devolatilization reactions, fluid exsolution from magmas). Studies of progressive metamorphism and anatexis show that the behavior of boron and its isotopes depends heavily on the presence or absence of B-retentive minerals like tourmaline. In general, boron is prone to loss during devolatilization reactions, and metamorphic fluid preferentially removes the heavier isotope, but growth of tourmaline can minimize or prevent these effects. A new compilation of over 250 B-isotope analyses from about 90 localities of felsic igneous rocks in the continental crust shows a first-order distinction in composition between I-type magmas (subduction-related having meta-igneous sources) and S-type magmas (derived from metasedimentary rocks). Boron in I-type magmas is isotopically heavy (mean δ11B = −2‰, s.d. = 5) relative to unaltered MORB (mean δ11B = −7‰, s.d. = 1), presumably because of a greater contribution by subducted oceanic crust and pelagic sediments. Boron in S-type granitic rocks has a much lighter isotopic signature (mean δ11B = −11‰, s.d. = 4). The latter corresponds to the commonly cited B-isotope value of −10‰ for continental crust, but because much of Earth’s crust is derived from I-type magmas, its average B-isotope value is probably higher than previously thought. The dichotomy of B-isotope compositions in I- and S-type granitoids is also observed in their genetically related magmatic-hydrothermal ore deposits, as we demonstrate in a review of data from porphyry and Iron Oxide-Copper-Gold (IOCG) systems (I-type) and from Sn-W veins and granitic pegmatites (S-type). However, it is important to note that in all of these systems, there are significant and locally complex effects of isotopic fractionation due to magmatic fluid exsolution and to mixing of boron sourced from externally derived fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Vigil A, Pereira MD, Shaw DM, London D (2001) Contrasting behavior of boron during crustal anatexis. Lithos 56:15–31

    Article  Google Scholar 

  • Acosta-Vigil A, London D, Morgan GB IV, Dewers TA (2003) Solubility of excess aluminum in hydrous granitic melts in equilibrium with peraluminous minerals at 700–800 °C and 200 MPa, and applications of the aluminum saturation index. Contrib Min Petrol 146:100–119

    Article  Google Scholar 

  • Anderson AT, Davis AM, Lu FQ (2000) Evolution of Bishop Tuff rhyolitic magma based on melt and magnetite inclusions and zoned phenocrysts. J Petrol 41:449–473

    Article  Google Scholar 

  • Audetat A, Guenther D, Heinrich CA (2000) Magmatic-hydrothermal evolution in a fractionating granite: a microchemical study of the Sn–W–F–mineralized Mole Granite (Australia). Geochim Cosmochim Acta 64:3373–3393

    Article  Google Scholar 

  • Badanina EV, Syritso LF, Volkova EV, Thomas R, Trumbull RB (2010) Composition of Li–F granite melt and its evolution during the formation of the ore-bearing Orlovka massif in eastern Transbaikalia. Petrology 18:131–157

    Article  Google Scholar 

  • Badanina EV, Veksler IV, Thomas R, Syritso LF, Trumbull RB (2004) Magmatic evolution of Li–F, rare-metal granites: a case study of melt inclusions in the Khangilay Complex, eastern Transbaikalia (Russia). Chem Geol 210:113–133

    Article  Google Scholar 

  • Baksheev IA, Prokofiev VY, Trumbull RB, Wiedenbeck M, Yapaskurt VO (2015) Geochemical evolution of tourmaline in the Darasun gold district deposits, Transbaikal region, Russia: evidence from chemical and boron isotope compositions in tourmaline. Min Deposita 50:125–138

    Article  Google Scholar 

  • Baltatzis E, Kostopoulos D, Godelitsas A, Zachariadis P, Papanikolaou D (2009) Pliocene tourmaline rhyolite dykes from Ikaria Island in the Aegean back-arc region: geodynamic implications. Geodinam Acta 22:189–199

    Article  Google Scholar 

  • Barth S (1993) Boron isotope variations in nature: a synthesis. Geologische Rund 82:640–651

    Google Scholar 

  • Barton MD (2014) Iron oxide (−Cu–Au–REE–P–Ag–U–Co) systems. In: Scott SD (ed) Geochemistry of mineral deposits. Treatise on Geochemistry, Elsevier, Amsterdam, vol 13, pp 515–541

    Google Scholar 

  • Bebout GE, Nakamura E (2003) Record in metamorphic tourmalines of subduction zone devolatilization and boron cycling. Geology 31:407–410

    Article  Google Scholar 

  • Bebout GR, Agard P, Kobayashi K, Moriguti T, Nakamura E (2013) Devolatilization history and trace element mobility in deeply subducted sedimentary rocks: evidence from Western Alps HP/UHP suites. Chem Geol 342:1–20

    Article  Google Scholar 

  • Büttner SH, Reid W, Glodny J, Wiedenbeck M, Chuwa G, Moloto T, Gucsik A (2016) Fluid sources in the Twangiza-Namoya gold belt (Democratic Republic of Congo): evidence from tourmaline and fluid compositions, and from boron and Rb–Sr isotope systematics. Prec Res 280:161–178

    Article  Google Scholar 

  • Cawood PA, Hawkesworth CJ, Dhuime B (2013) The continental record and the generation of continental crust. Geol Soc America Bull 125:14–32

    Article  Google Scholar 

  • Černý P (2005) The Tanco rare-element pegmatite deposit, Manitoba: regional context, internal anatomy, and global comparisons. In: Linnen RL, Samson IM (eds) Rare-element geochemistry and mineral deposits, GAC Short Course Notes 17, pp 127–158

    Google Scholar 

  • Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Austral J Earth Sci 48:489–499

    Article  Google Scholar 

  • Chaussidon M, Albarede F (1992) Secular boron isotope variations in the continental crust: an ion microprobe study. Earth Planet Sci Lett 108:229–241

    Article  Google Scholar 

  • Chaussidon M, Appel PWU (1997) Boron isotopic composition of tourmalines from the 3.8 Ga-old Isua supracrustals, West Greenland: implications on the δ11B value of Early Archean seawater. Chem Geol 136:171–180

    Article  Google Scholar 

  • Clemens JD, Stevens G (2012) What controls chemical variation in granitic magmas? Lithos 134–135:317–329

    Article  Google Scholar 

  • da Costa LB, Mourão C, Récio C, Guimarães F, Antunes IM, Ramos JF, Barriga FJAS, Palmer MR, Milton JA (2014) Tourmaline occurrences within the Penamacor-Monsanto granitic pluton and host-rocks (central Portugal): genetic implications of crystal-chemical and isotopic features. Contrib Mineral Petrol 167:993. doi:10.1007/s00410-014-0993-7

  • Deegan FM, Troll VR, Whitehouse MJ, Jolis EM, Freda C (2016) Boron isotope fractionation in magma via crustal carbonate dissolution. Scientific Reports 6:30774. doi:10.1038/srep30774

    Article  Google Scholar 

  • De Hoog CJ, Savov IP (2017) Subduction zones, dehydration, metasomatism, mud and serpentinite volcanoes, and arc magmatism. In: Marschall HR, Foster GL (eds) Boron isotopes—The fifth element, Advances in Isotope Geochemistry, vol 7, Springer, Heidelberg, 219–250

    Google Scholar 

  • Dhuime B, Wuestefeld A, Hawkesworth CJ (2015) Emergence of modern continental crust about 3 billion years ago. Nature Geosci 8:552–555

    Article  Google Scholar 

  • Di Renzo V, Arienzo I, Civetta L, D’Antonio M, Tonarini S, Di Vito MA, Orsi G (2011) The magmatic feeding system of the Campi Flegrei caldera: architecture and temporal evolution. Chem Geol 281:227–241

    Article  Google Scholar 

  • Dingwell DB, Pichavant M, Holtz F (1996) Experimental studies of boron in granitic melts. In: Grew ES, Anovitz LM (eds) Boron: mineralogy, petrology and geochemistry. Rev Mineral 33, Mineral Soc America, Washington, DC, pp 331–386

    Google Scholar 

  • Drivenes K, Larsen RB, Mueller A, Borensen BE, Wiedenbeck M, Raanes MP (2015) Late-magmatic immiscibility during batholith formation: assessment of B isotopes and trace elements in tourmaline from the Land’s End Granite, SW England. Contrib Min Petrol 169:56. doi:10.1007/s00410-015-1151-6

  • Duncan RJ, Buick IS, Kobayashi K, Wilde AR (2014) Chemical and stable isotopic characteristics of syn-tectonic tourmaline from the western fold belt, Mount Isa inlier, Queensland, Australia. Chem Geol 381:131–143

    Article  Google Scholar 

  • Esmaeily D, Trumbull RB, Haghnazar M, Krienitz M-S, Wiedenbeck M (2009) Chemical and boron isotopic composition of hydrothermal tourmaline from scheelite-quartz veins at Nezamabad, western Iran. Eur J Min 21:347–360

    Article  Google Scholar 

  • Farber K, Dziggel A, Trumbull RB, Meyer FM, Wiedenbeck M (2015) Tourmaline B-isotopes as tracers of fluid sources in silicified Palaeoarchean oceanic crust from the Mendon Formation, Barberton greenstone belt, South Africa. Chem Geol 417:134–147

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048

    Article  Google Scholar 

  • Gaillardet J, Lemarchand D (2017) Boron isotopes in riverine systems and the weathering environment. In: Marschall HR, Foster GL (eds) Boron Isotopes—The Fifth Element, Advances in Isotope Geochemistry, vol. 7, Springer, Heidelberg, 165–189

    Google Scholar 

  • Galbraith CG, Clarke DB, Trumbull RB, Wiedenbeck M (2009) Assessment of tourmaline compositions as an indicator of emerald mineralization at the Tsa da Glisza prospect, Yukon Territory, Canada. Econ Geol 104:713–731

    Article  Google Scholar 

  • Garda GM, Trumbull RB, Beljavskis P, Wiedenbeck M (2009) Boron isotope composition of tourmalinite and vein tourmalines associated with gold mineralization, Serra do Itaberaba Group, central Ribeira belt, SE Brazil. Chem Geol 264:207–220

    Article  Google Scholar 

  • Gao S, Luo T-C, Zhang B-R, Zhang H-F, Han Y-W, Zhao Z-D, Hu Y-K (1998) Chemical composition of the continental crust as revealed by studies in East China. Geochim Cosmochim Acta 62:1959–1975

    Article  Google Scholar 

  • Grew ES (1996) Borosilicates (exclusive of tourmaline) and boron in rock-forming minerals in metamorphic rocks. In: Grew ES, Anovitz LM (eds) Boron: mineralogy, petrology and geochemistry. Rev Mineral 33, Mineral Soc America, Washington, DC, pp 387–502

    Google Scholar 

  • Grew ES, Anovitz LM, eds (1996) Boron: mineralogy, petrology and geochemistry. Rev Mineral 33, Mineral Soc America, Washington, DC, 864 p

    Google Scholar 

  • Grew ES, Dymek RF, DeHoog JCM, Harley SL, Boak J, Hazen RM, Yates MG (2015) Boron isotopes in tourmaline from the ca. 3.7–3.8 Ga Isua supracrustal belt, Greenland: sources for boron in Eoarchean continental crust and seawater. Geochim Cosmochim Acta 163:156–177

    Article  Google Scholar 

  • Griffin WL, Belousova EA, O’Neill C, O’Reilly SY, Malkovets V, Pearson NJ, Spetsius S, Wilde SA (2014) The world turns over: Hadean-Archean crust-mantle evolution. Lithos 189:2–15

    Article  Google Scholar 

  • Halama R, Konrad-Schmolke M, Sudo M, Marschall HR, Wiedenbeck M (2014) Effects of fluid–rock interaction on 40Ar/39Ar geochronology in high-pressure rocks (Sesia-Lanzo zone, western Alps). Geochim Cosmochim Acta 126:475–494

    Article  Google Scholar 

  • Hervig RL, Moore GM, Williams LB, Peacock SM, Holloway JR, Roggensack K (2002) Isotopic and elemental partitioning of boron between hydrous fluid and silicate melt. Am Min 87:769–774

    Article  Google Scholar 

  • Hezel DC, Kalt A, Marschall HR, Ludwig T, Meyer H-P (2011) Major-element and Li, Be compositional evolution of tourmaline in an S-type granite-pegmatite system and its country rocks: an example from Ikaria, Aegean Sea, Greece. Can Min 49:321–340

    Article  Google Scholar 

  • Huang S-Q, Song Y-C, Hou Z-Q, Xue C-D (2016) Chemical and stable isotopic (B, H, and O) compositions of tourmaline in the Maocaoping vein-type Cu deposit, western Yunnan, China: constraints on fluid source and evolution. Chem Geol 439:173–188

    Article  Google Scholar 

  • Ishikawa T, Nakamura E (1994) Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes. Nature 370:205–208

    Article  Google Scholar 

  • Ishikawa T, Tera F, Nakazawa T (2001) Boron isotope and trace element systematics of the three volcanic zones in the Kamchatka arc. Geochim Cosmochim Acta 65:4523–4537

    Article  Google Scholar 

  • Iveson AA, Webster JD, Rowe MC, Neill OK (2016) Magmatic–hydrothermal fluids and volatile metals in the Spirit Lake pluton and Margaret Cu–Mo porphyry system, SW Washington, USA. Contrib Min Petrol 171, 20. doi:10.1007/s00410-015-1224-6

  • Jiang S-Y (2001) Boron isotope geochemistry of hydrothermal ore deposits in China: a preliminary study. Phys Chem Earth (A) 26:851–858

    Article  Google Scholar 

  • Jiang S-Y, Palmer MR (1998) Boron isotope systematics of tourmaline from granites and pegmatites: a synthesis. Eur J Min 10:1253–1265

    Article  Google Scholar 

  • Jiang S-Y, Palmer MR, Slack JF, Shaw DR (1999) Boron isotope systematics of tourmaline formation in the Sullivan Pb–Zn–Ag deposit, British Columbia, Canada. Chem Geol 158:131–144

    Article  Google Scholar 

  • Jiang S-Y, Palmer MR, Yeats CJ (2002) Chemical and boron isotopic compositions of tourmaline from the Archean Big Bell and Mount Gibson gold deposits, Murchison Province, Yilgarn craton, Western Australia. Chem Geol 188:229–247

    Article  Google Scholar 

  • Jiang S-Y, Radvanec M, Nakamura E, Palmer M, Kobayaski K, Zhao H-X, Zhao K-D (2008) Chemical and boron isotopic variations of tourmaline in the Hnilec granite-related hydrothermal system, Slovakia: constraints on magmatic and metamorphic fluid evolution. Lithos 106:1–11

    Article  Google Scholar 

  • Jochum K-P, et al (2006) MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios. Geochem Geophys Geosyst 7:Q02008. doi:10.1029/2005GC001060

  • Jones RE, De Hoog JCM, Kirstein LA, Kasemann S, Hinton R, Elliot T, Litvak VD, EIMF (2014) Temporal variations in the influence of the subducting slab on central Andean arc magmas: evidence from boron isotope systematics. Earth Planet Sci Lett 408, 390–401

    Google Scholar 

  • Kaliwoda M, Marschall HR, Marks MAH, Ludwig T, Altherr R, Markl G (2011) Boron and boron isotope systematics in the peralkaline Ilímaussaq intrusion (South Greenland) and its granitic country rocks: a record of magmatic and hydrothermal processes. Lithos 125:51–64

    Article  Google Scholar 

  • Kasemann S, Erzinger J, Franz G (2000) Boron recycling in the continental crust of the central Andes from the Paleozoic to Mesozoic, NW Argentina. Contrib Min Petrol 140:328–343

    Article  Google Scholar 

  • Kawakami T, Ikeda T (2003) Boron in metapelites controlled by the breakdown of tourmaline and retrograde formation of borosilicates in the Yanai area, Ryoke metamorphic belt, SW Japan. Contrib Min Petrol 145:131–150

    Article  Google Scholar 

  • Konrad-Schmolke M, Halama R (2014) Combined thermodynamic–geochemical modeling in metamorphic geology: boron as tracer of fluid–rock interaction. Lithos 208–209:393–414

    Article  Google Scholar 

  • Kowalski PM, Wunder B, Jahn S (2013) Ab initio prediction of equilibrium boron isotope fractionation between minerals and aqueous fluids at high P and T. Geochim Cosmochim Acta 101:285–301

    Article  Google Scholar 

  • Kowalski P, Wunder B (2017) Boron-isotope fractionation among solids-fluids-melts: experiments and atomic modeling. In: Marschall HR, Foster GL (eds) Boron Isotopes—The Fifth Element, Advances in Isotope Geochemistry, vol 7, Springer, Heidelberg, 33–70

    Google Scholar 

  • Krienitz M-S, Trumbull RB, Hellmann A, Kolb J, Meyer FM, Wiedenbeck M (2008) Hydrothermal gold mineralization at the Hira Buddini gold mine, India: constraints on fluid sources and evolution from boron isotopic compositions of tourmaline. Min Deposita 43:421–434

    Article  Google Scholar 

  • Lambert-Smith JS, Rocholl A, Treloar PJ, Lawrence DM (2016) Discriminating fluid source regions in orogenic gold deposits using B-isotopes. Geochim Cosmochim Acta 194:57–76

    Article  Google Scholar 

  • Leeman WP, Sisson, VB (1996) Geochemistry of boron and its implications for crustal and mantle processes. In: Grew ES, Anovitz LM (eds) Boron: mineralogy, petrology and geochemistry. Rev Mineral 33, Miner Soc America, Washington, DC, pp 645–707

    Google Scholar 

  • Leeman WP, Tonarini S, Chan LH, Borg LE (2004) Boron and lithium isotopic variations in a hot subduction zone—the southern Washington Cascades. Chem Geol 212:101–124

    Article  Google Scholar 

  • Lehmann B, Dietrich A, Heinhorst J, Metrich N, Mosbah M, Palacios C, Schneider H-J, Wallianos A, Webster J, Winkelmann L (2000) Boron in the Bolivian tin belt. Min Deposita 35:223–232

    Article  Google Scholar 

  • Linnen RL, Lichtervelde MV, Černý P (2012) Granitic pegmatites as sources of strategic metals. Elements 8:275–280

    Article  Google Scholar 

  • London D (1986) Magmatic-hydrothermal transition in the Tanco rare metal pegmatite: evidence from fluid inclusions and phase equilibrium experiments. Amer Min 71:376–395

    Google Scholar 

  • London D (2011) Experimental synthesis and stability of tourmaline: a historical overview. Can Min 49:117–136

    Article  Google Scholar 

  • London D (2014) A petrologic assessment of internal zonation in granitic pegmatites. Lithos 184–187:74–104

    Article  Google Scholar 

  • London D (2015) Reply to Thomas and Davidson on “A petrologic assessment of internal zonation in granitic pegmatites” (London, 2014a). Lithos 212–215:469–484

    Article  Google Scholar 

  • London D, Morgan V1 GB, Wolf MB (1996) Boron in granitic rocks and their contact aureoles. In: Grew ES, Anovitz LM (eds) Boron: mineralogy, petrology and geochemistry. Rev Mineral 33, Mineral Soc America, Washington, DC, pp 299–330

    Google Scholar 

  • London D, Morgan VIGB, Acosta-Vigil A (2012) Experimental simulations of anatexis and assimilation involving metapelite and granitic melt. Lithos 153:292–307

    Article  Google Scholar 

  • Ludwig T, Marschall HR, Pogge von Strandmann PAE, Shabaga BM, Fayek M, Hawthorne FC (2011) A secondary ion mass spectrometry (SIMS) re-evaluation of B and Li isotopic compositions of Cu-bearing elbaite from three global localities. Min Mag 75:2485–2494

    Article  Google Scholar 

  • MacGregor JR, Grew ES, DeHoog JCM, Harley SL, Kowalski PM, Yates MG, Carson CJ (2013) Boron isotopic composition of tourmaline, prismatine, and grandidierite from granulite facies paragneisses in the Larsemann Hills, Prydz Bay, East Antarctica: evidence for a non-marine evaporite source. Geochim Cosmochim Acta 123:261–283

    Article  Google Scholar 

  • Marschall HR (2017) Boron isotopes in the ocean floor realm and the mantle. In: Marschall HR, Foster GL (eds) Boron Isotopes—The Fifth Element, Advances in Isotope Geochemistry, vol 7, Springer, Heidelberg, 191–217

    Google Scholar 

  • Marschall HR, Jiang S-Y (2011) Tourmaline isotopes: no element left behind. Elements 7:313–319

    Article  Google Scholar 

  • Marschall HR, Ludwig T (2006) Re-examination of the boron isotopic composition of tourmaline from the Lavicky granite, Czech Republic, by secondary ion mass spectrometry: back to normal. Geochem J 40:631–638

    Article  Google Scholar 

  • Marschall HR, Altherr R, Kalt A, Ludwig T (2008) Detrital, metamorphic and metasomatic tourmaline in high pressure metasediments from Syros (Greece): intra-grain boron isotope patterns determined by secondary-ion mass spectrometry. Contrib Min Petrol 155:703–717

    Article  Google Scholar 

  • Marschall HR, Korsakov AV, Luvizotto GL, Nasdala L, Ludwig T (2009) On the occurrence and boron isotopic composition of tourmaline in (ultra)high-pressure metamorphic rocks. J Geol Soc London 166:811–832

    Article  Google Scholar 

  • Marschall HR, Wanless VD, Shimizu N, Pogge von Strandmann PAE, Elliott T, Monteleone BD (2017) The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle. Geochim Cosmochim Acta 207:102–138

    Google Scholar 

  • Mathews A, Pullitz B, Hamiel Y, Hervig RL (2003) Volatile transport during the transportation of anatectic melts: oxygen, boron and hydrogen stable isotope study on the metamorphic complex of Naxos, Greece. Geochim Cosmochim Acta 67:3145–3163

    Article  Google Scholar 

  • Molnár F, Mänttäri I, O’Brient H, Lahaye Y, Pakkanen L, Johanson B, Käpyaho A, Sorjonen-Ward P, Whitehouse M, Sakellaris G (2016) Boron, sulphur and copper isotope systematics in the orogenic gold deposits of the Archaean Hattu schist belt, eastern Finland. Ore Geol Rev 77:133–162

    Article  Google Scholar 

  • Moran AE, Sisson VB, Leeman WP (1992) Boron depletion during progressive metamorphism: implications for subduction processes. Earth Planet Sci Lett 111:331–349

    Article  Google Scholar 

  • Nakamo T, Nakamura E (2001) Boron isotope geochemistry of metasedimentary rocks and tourmalines in a subduction zone metamorphic suite. Phys Earth Planet Inter 127:233–252

    Article  Google Scholar 

  • Pal DC, Trumbull RB, Wiedenbeck M (2010) Chemical and boron isotope compositions of tourmaline from the Jaduguda U (–Cu–Fe) deposit, Singhbhum shear zone, India: implications for the source and evolution of the mineralizing fluid. Chem Geol 277:245–260

    Article  Google Scholar 

  • Palmer MR, Slack JF (1989) Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites. Contrib Min Petrol 103:434–451

    Article  Google Scholar 

  • Palmer MR, Sturchio NC (1990) The boron isotope systematics of the Yellowstone National Park (Wyoming) hydrothermal system: a reconnaissance. Geochim Cosmochim Acta 54:2811–2815

    Article  Google Scholar 

  • Palmer MR, Swihart GH (1996) Boron isotope geochemistry: an overview. In: Grew ES, Anovitz LM (eds) Boron: mineralogy, petrology and geochemistry. Rev Mineral 33, Mineral Soc America, Washington, DC, pp 709–744

    Google Scholar 

  • Pereira Gomez MD, Shaw DM (1997) Behaviour of boron in the generation of an anatectic complex: the Peña Negra complex, central Spain. Lithos 40:179–188

    Article  Google Scholar 

  • Peretyazhko IS, Zagorsky VY, Smirnov SZ, Mikhailov MY (2004) Conditions of pocket formation in the Oktyabrskaya tourmaline-rich gem pegmatite (the Malkhan field, central Transbaikalia, Russia). Chem Geol 210:91–111

    Article  Google Scholar 

  • Pesquera A, Torres-Ruiz J, Gil-Crespo PP, Jiang S-Y (2005) Petrographic, chemical and B-isotopic insights into the origin of tourmaline-rich rocks and boron recycling in the Martinamor antiform (central Iberian zone, Salamanca, Spain). J Petrol 46:1013–1044

    Article  Google Scholar 

  • Romer RL, Meixner A (2014) Lithium and boron isotopic fractionation in sedimentary rocks during metamorphism– the role of rock compositions and protolith mineralogy. Geochim Cosmochim Acta 128:158–177

    Article  Google Scholar 

  • Romer RL, Meixner A, Förster H-J (2014) Lithium and boron in late-orogenic granites—isotopic fingerprints for the source of crustal melts? Geochem Cosmochim Acta 131:98–114

    Article  Google Scholar 

  • Rosner M, Erzinger J, Franz G, Trumbull RB (2003) Slab-derived boron isotope signatures in arc volcanic rocks from the central Andes and evidence for boron isotope fractionation during progressive slab dehydration. Geochem Geophys Geosys. doi:10.1029/2002GC000438

  • Rowins SM, Groves DI, McNaughton NJ (1997) A reinterpretation of the role of granitoids in the genesis of Neoproterozoic gold mineralization in the Telfer dome, Western Australia. Econ Geol 92:133–160

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Holland HD, Turrekian KK (eds) Treatise on geochemistry, Elsevier, Amsterdam, vol 3, pp 1–64

    Google Scholar 

  • Sauerer A, Troll G (1990) Abundance and distribution of boron in the Hauzenberg (Bavaria) granite complex. Geochim Cosmochim Acta 54:49–55

    Article  Google Scholar 

  • Savov IP, Leeman WP, Lee CA, Shirey SB (2009) Boron isotopic variations in NW USA rhyolites: Yellowstone, Snake River Plain, eastern Oregon. J Volc Geother Res 188:162–172

    Article  Google Scholar 

  • Schmitt AK, Simon JI (2004) Boron isotopic variations in hydrous rhyolitic melts: a case study from Long Valley, California. Contrib Min Petrol 146:590–605

    Article  Google Scholar 

  • Schmitt AK, Kasemann S, Meixner A, Rhede D (2002) Boron in central Andean ignimbrites: implications for crustal boron cycles in an active continental margin. Chem Geol 183:333–347

    Article  Google Scholar 

  • Siegel K, Wagner T, Trumbull RB, Jonsson E, Matalin G, Wälle M, Heinrich CA (2016) Stable isotope (B, H, O) and mineral-chemistry constraints on the magmatic to hydrothermal evolution of the Varuträsk rare-element pegmatite (northern Sweden). Chem Geol 421:1–16

    Article  Google Scholar 

  • Sillitoe RH (2003) Iron oxide-copper-gold deposits: an Andean view. Min Deposita 38:787–812

    Article  Google Scholar 

  • Sirbescu MLC, Nabelek PI (2003) Crystallization conditions and evolution of magmatic fluids in the Harney Peak Granite and associated pegmatites, Black Hills, South Dakota—evidence from fluid inclusions. Geochim Cosmochim Acta 67:2443–2465

    Article  Google Scholar 

  • Slack JF (1996) Tourmaline associations with hydrothermal ore deposits. In: Grew ES, Anovitz LM (eds) Boron: mineralogy, petrology and geochemistry, Rev Mineral 33, Mineral Soc America, Washington, DC, pp 559–644

    Google Scholar 

  • Slack JF, Trumbull RB (2011) Tourmaline as a recorder of ore-forming processes. Elements 7:321–326

    Article  Google Scholar 

  • Slack JF, Palmer MR, Stevens BPJ (1989) Boron isotope evidence for the involvement of non-marine evaporites in the origin of the Broken Hill ore deposits. Nature 342:913–916

    Article  Google Scholar 

  • Slack JF, Palmer MR, Stevens BPJ, Barnes RG (1993) Origin and significance of tourmaline-rich rocks in the Broken Hill district, Australia. Econ Geol 88:505–541

    Article  Google Scholar 

  • Smith HJ, Leeman WP, Davidson J, Spivack AJ (1997) The B isotopic composition of arc lavas from Martinique, Lesser Antilles. Earth Planet Sci Lett 146:303–314

    Article  Google Scholar 

  • Smith MP, Yardley BWD (1996) The boron isotopic composition of tourmaline as a guide to fluid processes in the southwestern England orefield: an ion microprobe study. Geochim Cosmochim Acta 60:1415–1427

    Article  Google Scholar 

  • Su Z-K, Zhao X-F, Li X-C, Zhou M-F (2016) Using elemental and boron isotopic compositions of tourmaline to trace fluid evolutions of IOCG systems: the world class Dahongshan Fe–Cu deposit in SW China. Chem Geol 441:265–279

    Article  Google Scholar 

  • Swihart GH, Moore PB (1989) A reconnaissance of the boron isotopic composition of tourmaline. Geochim Cosmochim Acta 53:911–916

    Article  Google Scholar 

  • Thomas R (2002) Determination of the H3BO3 concentration in fluid and melt inclusions in granite pegmatites by laser Raman microprobe spectroscopy. Amer Min 87:56–68

    Article  Google Scholar 

  • Thomas R, Davidson P, Beurlen H (2012) The competing models for the origin and internal evolution of granitic pegmatites in the light of melt and fluid inclusion research. Min Petrol 106:55–73

    Article  Google Scholar 

  • Thomas R, Foerster H-J, Heinrich W (2003) The behavior of boron in a peraluminous granite-pegmatite system and associated hydrothermal solutions: a melt and fluid-inclusion study. Contrib Min Petrol 144:457–472

    Article  Google Scholar 

  • Thomas R, Webster JD, Heinrich W (2000) Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluids at low pressure. Contrib Min Petrol 139:394–401

    Article  Google Scholar 

  • Tonarini S, D’Antonio M, Di Vito MA, Orsi G, Carandente A (2009) Geochemical and B–Sr–Nd isotopic evidence for mingling and mixing processes in the magmatic system that fed the Astroni Volcano (4.1–3.8 ka) within the Campi Flegrei caldera (southern Italy). Lithos 107:135–151

    Article  Google Scholar 

  • Tonarini S, Dini A, Pezzotta F, Leeman WP (1998) Boron isotopic composition of zoned (schorl–elbaite) tourmalines, Mt Capanne Li–Cs pegmatites, Elba (Italy). Eur J Min 10:941–952

    Article  Google Scholar 

  • Tonarini S, Forte C, Petrini R, Ferrara G (2003) Melt/biotite 11B/10B isotopic fractionation and the boron local environment in the structure of volcanic glasses. Geochim Cosmochim Acta 67:1863–1873

    Article  Google Scholar 

  • Tonarini S, Leeman WP, Civetta L, D’Antonio M, Ferrara G, Necco A (2004) B/Nb and δ11B systematics in the Phlegrean volcanic district, Italy. J Volc Geother Res 133:123–139

    Article  Google Scholar 

  • Tornos F, Wiedenbeck M, Velasco F (2012) The boron isotope geochemistry of tourmaline-rich alteration in the IOCG systems of northern Chile: implications for a magmatic-hydrothermal origin. Min Deposita 47:483–499

    Article  Google Scholar 

  • Trumbull RB, Chaussidon M (1999) Chemical and boron isotopic compositions of magmatic and hydrothermal tourmalines from Sinceni granite-pegmatite system in Swaziland. Chem Geol 153:125–137

    Article  Google Scholar 

  • Trumbull RB, Krienitz M-S, Gottesmann B, Wiedenbeck M (2008) Chemical and boron-isotope variations in tourmalines from an S-type granite and its source rocks: the Erongo granite and tourmalinites in the Damara belt, Namibia. Contrib Min Petrol 155:1–18

    Article  Google Scholar 

  • Trumbull RB, Slack JF, Krienitz M-S, Belkin HE, Wiedenbeck M (2011) Fluid sources and metallogenesis in the Blackbird Co–Cu–Au–Bi–Y–REE district, Idaho, USA: insights from major-element and boron isotopic compositions of tourmaline. Can Min 49:225–244

    Article  Google Scholar 

  • Trumbull RB, Beurlen H, Wiedenbeck M, Soares DR (2013) The diversity of B-isotope variations in tourmaline from rare-element pegmatites in the Borborema Province of Brazil. Chem Geol 352:47–62

    Article  Google Scholar 

  • van Hinsberg VJ, Henry DJ, Dutrow BL (2011) Tourmaline as a petrologic forensic mineral: a unique recorder of its geologic past. Elements 7:327–332

    Article  Google Scholar 

  • Veksler IV, Thomas R (2002) An experimental study of B-, P- and F-rich synthetic granite pegmatite at 0.1 and 0.2 GPa. Contrib Min Petrol 143:673–683

    Article  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    Article  Google Scholar 

  • Wilson BM (1989) Igneous petrogenesis, a global tectonic approach. Unwin Hyman, London, p 466

    Book  Google Scholar 

  • Wittenbrink J, Lehmann B, Wiedenbeck M, Wallianos A, Dietrich A, Palacios C (2009) Boron isotope composition of melt inclusions from porphyry systems of the central Andes: a reconnaissance study. Terra Nova 21:111–118

    Article  Google Scholar 

  • Wolf MB, London D (1997) Boron in granitic magmas: stability of tourmaline in equilibrium with biotite and cordierite. Contrib Min Petrol 130:12–30

    Article  Google Scholar 

  • Wunder B, Meixner A, Romer RL, Wirth R, Heinrich W (2005) The geochemical cycle of boron: constraints from boron isotope partitioning experiments between mica and fluid. Lithos 84:206–216

    Article  Google Scholar 

  • Xavier RP, Wiedenbeck M, Trumbull RB, Dreher AM, Monteiro LVS, Rhede D, de Araújo CEG, Torresi I (2008) Tourmaline B-isotopes fingerprint marine evaporites as the source of high salinity ore fluids in iron oxide-copper-gold deposits, Carajás mineral province (Brazil). Geology 36:743–746

    Article  Google Scholar 

  • Yang S-Y, Jiang S-Y (2012) Chemical and boron isotopic composition of tourmaline in the Xiangshan volcanic–intrusive complex, southeast China: evidence for boron mobilization and infiltration during magmatic–hydrothermal processes. Chem Geol 312–313:177–189

    Article  Google Scholar 

  • Yang S-Y, Jiang S-Y, Palmer MR (2015) Chemical and boron isotopic compositions of tourmaline from the Nyalam leucogranites, south Tibetan Himalaya: implication for their formation from B-rich melt to hydrothermal fluids. Chem Geol 419:102–113

    Article  Google Scholar 

  • Yavuz F, Jiang S-Y, Karakaya N, Karakaya MC, Yavuz R (2011) Trace-element, rare-earth element and boron isotopic compositions of tourmaline from a vein-type Pb–Zn–Cu–U deposit, NE Turkey. Inter Geol Rev 53:1–24

    Article  Google Scholar 

  • Zhang ST, Ma DS, Lu JJ, Zhang RQ, Gao SY (2014) Chemical and boron isotopic composition of tourmaline in Baotan tin deposit, northern Guangxi, South China. Acta Geol Sinica (English edn) 88(Supl 2):485–486

    Google Scholar 

  • Zhao K-D, Jiang S-Y, Nakamura E, Moriguti T, Palmer MR, Yang S-Y, Dai B-Z, Jiang Y-H (2011) Fluid–rock interaction in the Qitianling granite and associated tin deposits, South China: evidence from boron and oxygen isotopes. Ore Geol Rev 43:243–248

    Article  Google Scholar 

  • Zhao K-D, Jiang S-Y, Nakamura E, Moriguti T, Wei H-Z (2015) A preliminary study on boron isotope fractionation of major rock-forming minerals in granite. Acta Petrol Sin 31:740–746 (Chinese with English abstract)

    Google Scholar 

  • Zheng Z, Deng X-H, Chen H-J, Yue S-W, Dong L-H, Qu X, Chen Y-J (2016) Fluid sources and metallogenesis in the Baiganhu W–Sn deposit, east Kunlun, NW China: insights from chemical and boron isotopic compositions of tourmaline. Ore Geol Rev 72:1129–1142

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Horst Marschall for the invitation to contribute to this book and for his insightful comments on the manuscript. This chapter benefitted from reviews by Robert Ayuso and Robert Seal (both U.S. Geological Survey, Reston), Shao-Yong Jiang (China University of Geosciences, Wuhan), and Mathias Konrad-Schmolke (University of Gothenburg, Göteborg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Trumbull .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trumbull, R.B., Slack, J.F. (2018). Boron Isotopes in the Continental Crust: Granites, Pegmatites, Felsic Volcanic Rocks, and Related Ore Deposits. In: Marschall, H., Foster, G. (eds) Boron Isotopes. Advances in Isotope Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-64666-4_10

Download citation

Publish with us

Policies and ethics