Skip to main content

An Integrated Compliant Fabric Skin Softens, Lightens, and Simplifies a Mesh Robot

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10384))

Included in the following conference series:

Abstract

Earthworms are particularly skilled at navigating through confined spaces. Therefore, creating a soft robot that mimics their peristaltic locomotion could provide unique advantages for pipe inspection, search and rescue, exploration, and medical applications. Here we present the design of a new robot, FabricWorm, that like its predecessor, CMMWorm, has six segments that are actuated with circumferential cables sequentially to mimic the peristaltic motion in an earthworm. However, compared to its predecessor, FabricWorm is 41% softer, is 23% lighter, and has 64% fewer rigid structural components due to the integration of the mesh within a fabric skin. These improvements, and the benefit of a continuous fabric skin, can be important advantages for worm-like robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gray, J., Lissmann, H.W.: Studies in animal locomotion VII. Locomotory reflexes in the earthworm. J. Exp. Biol. 15, 506–517 (1938)

    Google Scholar 

  2. Tanaka, T., Harigaya, K., Nakamura, T.: Development of a peristaltic crawling robot for long-distance inspection of sewer pipes. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Besançon, France, pp. 1552–1557 (2014)

    Google Scholar 

  3. Wang, K., Yan, G.: Micro robot prototype for colonoscopy and in vitro experiments. J. Med. Eng. Technol. 31, 24–28 (2007)

    Article  Google Scholar 

  4. Dario, P., Ciarletta, P., Menciassi, A., Kim, B.: Modeling and experimental validation of the locomotion of endoscopic robots in the colon. Int. J. Robot. Res. 23, 549–556 (2004)

    Article  Google Scholar 

  5. Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31, 287–294 (2013)

    Article  Google Scholar 

  6. Omori, H., Nakamura, T., Yada, T.: An underground explorer robot based on peristaltic crawling of earthworms. Ind. Robot. Int. J. 36, 358–364 (2009)

    Article  Google Scholar 

  7. Vaidyanathan, R., Chiel, H.J., Quinn, R.D.: A hydrostatic robot for marine applications. Robot. Auton. Syst. 30, 103–113 (2000)

    Article  Google Scholar 

  8. Seok, S., Onal, C.D., Cho, K.-J., Wood, R.J., Rus, D., Kim, S.: Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Trans. Mechatron. 18, 1485–1497 (2013)

    Article  Google Scholar 

  9. Mazzolai, B., Margheri, L., Cianchetti, M., Dario, P., Laschi, C.: Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspiration Biomimetrics 7(2), 025005 (2012)

    Article  Google Scholar 

  10. Umedachi, T., Trimmer, B.A.: Design of a 3D-printed soft robot with posture and steering control. In: Proceedings of IEEE International Conference on Robotics and Automation, Hong Kong, pp. 2874–2879 (2014)

    Google Scholar 

  11. Mangan, E.V., Kingsley, D.A., Quinn, R.D., Chiel, H.J.: Development of a peristaltic endoscope. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 347–352 (2002)

    Google Scholar 

  12. Onal, C.D., Chen, X., Whitesides, G.M., Rus, D.: Soft mobile robots with on-board chemical pressure generation. In: International Symposium on Robotics Research, pp. 1–16 (2011)

    Google Scholar 

  13. Tolley, M., Shepherd, R., Mosadegh, B., Galloway, K., Wehner, M., Karpelson, M., et al.: A Resilient. Untethered Soft Robot. Soft Robot. 1(3), 213–223 (2014)

    Article  Google Scholar 

  14. Katzschman, R.K., Marchese, A.D., Rus, D.: Hydraulic autonomous soft robotic fish for 3D swimming. In: Proceedings of the International Symposium Experimental Robotics, pp. 1–15 (2014)

    Google Scholar 

  15. Jung, K., Koo, J.C., Nam, J., Lee, Y.K., Choi, H.R.: Artificial annelid robot driven by soft actuators. Bioinspiration Biomimetics 2(2), S42-9 (2007)

    Article  Google Scholar 

  16. Carpi, F., Menon, C., De Rossi, D.: Electroactive elastomeric actuator for all-polymer linear peristaltic pumps. IEEE/ASME Trans. Mechatron. 15(3), 460–470 (2010)

    Article  Google Scholar 

  17. Boxerbaum, A.S., Chiel, H.J., Quinn, R.D.: A new theory and methods for creating peristaltic motion in a robotic platform. In: Proceedings of IEEE International Conference on Robotics and Automation, Anchorage, AK, pp. 1221–1227 (2010)

    Google Scholar 

  18. Renda, F., Cianchetti, M., Giorelli, M., Arienti, A., Laschi, C.: A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm. Bioinspiration Biomimetrics 7, 025006 (2012)

    Article  Google Scholar 

  19. Jones, B.A., Walker, I.D.: Kinematics for multisection continuum robots. IEEE Trans. Robot. 22(1), 43–55 (2006)

    Article  Google Scholar 

  20. Horchler, A., Kandhari, A., Daltorio, K., Moses, K., Ryan, J., Stultz, K., et al.: Peristaltic locomotion of a modular mesh-based worm robot: precision, compliance, and friction. Soft Robot. 2, 135–145 (2015)

    Article  Google Scholar 

  21. Horchler, A.D., Kandhari, A., Daltorio, K.A., et al.: Worm-like robotic locomotion with a compliant modular mesh. In: Proceedings of International Conference on biomimetic and biohybrid systems, vol. 9222, Barcelona, Spain, pp. 26–37 (2015)

    Google Scholar 

  22. Huang, Y., Kandhari, A., Chiel, H.J., Quinn, R.D., Daltorio, K.A.: Mathematical Modeling to Improve Control of Mesh Body for Peristaltic Locomotion, Living Machines 2017 (submitted)

    Google Scholar 

  23. Lee, D., Kim, J., Park, J., Kim, S., Cho, K.: Fabrication of origami wheel using pattern embedded fabric and its application to a deformable mobile robot. IEEE (2014)

    Google Scholar 

  24. Case, J.C., Yuen, M.C., Mohammed, M., Kramer, R.K.: Sensor skins: an overview. In: Rogers, J., Gharrari, R., Kim, D.-H. (eds.) In Stretchable Bioelectronics for Medical Devices and Systems, pp. 13–191. Springer, New York (2016)

    Google Scholar 

  25. Quinlivan, B.T., Lee, S., Malcolm, P., Rossi, D.M., Grimmer, M., Siviy, C., Karavas, N., Wagner, D., Asbeck, A., Galiana, I., Walsh, C.J.: Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit. Sci. Rob. 2(2), eaah4416 (2017)

    Article  Google Scholar 

  26. Gaddes, D., Jung, H., Pena-Francesch, A., Dion, G., Tadigadapa, S., Dressick, W., et al.: Self-healing textile: enzyme encapsulated layer-by-layer structural proteins. ACS Appl. Mater. Interfaces. 8(31), 20371–20378 (2016)

    Article  Google Scholar 

  27. Kim, K., Chun, J., Kim, J., Lee, K., Park, J., Kim, S., et al.: Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments. ACS Nano 9(6), 6394–6400 (2015)

    Article  Google Scholar 

  28. Coyle, S., Wu, Y., Lau, K., De Rossi, D., Wallace, G., Diamond, D.: Smart nanotextiles: a review of materials and applications. MRS Bull. 32(5), 434–442 (2007)

    Article  Google Scholar 

  29. Connolly, F., Polygerinos, P., Walsh, C.J., Bertoldi, K.: Mechanical programming of soft actuators by varying fiber angle. Soft. Robot. 1, 26–32 (2015)

    Article  Google Scholar 

  30. Mangan, E.V., Kingsley, D.A., Quinn, R.D., Sutton, G.P., Mansour, J.M., Chiel, H.J.: A biologically inspired gripping device. Ind. Robot. Int. J. 32, 49–54 (2005)

    Article  Google Scholar 

  31. Mehringer, A., FabricWorm, A.: Biologically-Inspired Robot That Demonstrates Structural Advantages of a Soft Exterior for Peristaltic Locomotion, OhioLink (2017, submitted)

    Google Scholar 

Download references

Acknowledgments

This work was supported by NSF research Grant No. IIS-1065489.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Mehringer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mehringer, A., Kandhari, A., Chiel, H., Quinn, R., Daltorio, K. (2017). An Integrated Compliant Fabric Skin Softens, Lightens, and Simplifies a Mesh Robot. In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63537-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63536-1

  • Online ISBN: 978-3-319-63537-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics